Page 1

Displaying 1 – 5 of 5

Showing per page

Ascent and descent for sets of operators

Derek Kitson (2009)

Studia Mathematica

We extend the notion of ascent and descent for an operator acting on a vector space to sets of operators. If the ascent and descent of a set are both finite then they must be equal and give rise to a canonical decomposition of the space. Algebras of operators, unions of sets and closures of sets are treated. As an application we construct a Browder joint spectrum for commuting tuples of bounded operators which is compact-valued and has the projection property.

Isomorphic Schauder decompositions in certain Banach spaces

Vitalii Marchenko (2014)

Open Mathematics

We extend a theorem of Kato on similarity for sequences of projections in Hilbert spaces to the case of isomorphic Schauder decompositions in certain Banach spaces. To this end we use ℓψ-Hilbertian and ∞-Hilbertian Schauder decompositions instead of orthogonal Schauder decompositions, generalize the concept of an orthogonal Schauder decomposition to the case of Banach spaces and introduce the class of Banach spaces with Schauder-Orlicz decompositions. Furthermore, we generalize the notions of type,...

Standard Models of Abstract Intersection Theory for Operators in Hilbert Space

Grzegorz Banaszak, Yoichi Uetake (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

For an operator in a possibly infinite-dimensional Hilbert space of a certain class, we set down axioms of an abstract intersection theory, from which the Riemann hypothesis regarding the spectrum of that operator follows. In our previous paper (2011) we constructed a GNS (Gelfand-Naimark-Segal) model of abstract intersection theory. In this paper we propose another model, which we call a standard model of abstract intersection theory. We show that there is a standard model of abstract intersection...

The Order on Projections in C*-Algebras of Real Rank Zero

Tristan Bice (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

We prove a number of fundamental facts about the canonical order on projections in C*-algebras of real rank zero. Specifically, we show that this order is separative and that arbitrary countable collections have equivalent (in terms of their lower bounds) decreasing sequences. Under the further assumption that the order is countably downwards closed, we show how to characterize greatest lower bounds of finite collections of projections, and their existence, using the norm and spectrum of simple...

Currently displaying 1 – 5 of 5

Page 1