Decomposability of operator-valued functions
We produce closed nontrivial invariant subspaces for closed (possibly unbounded) linear operators, A, on a Banach space, that may be embedded between decomposable operators on spaces with weaker and stronger topologies. We show that this can be done under many conditions on orbits, including when both A and A* have nontrivial non-quasi-analytic complete trajectories, and when both A and A* generate bounded semigroups that are not stable.
For a multiplier on a semisimple commutative Banach algebra, the decomposability in the sense of Foiaş will be related to certain continuity properties and growth conditions of its Gelfand transform on the spectrum of the multiplier algebra. If the multiplier algebra is regular, then all multipliers will be seen to be decomposable. In general, an important tool will be the hull-kernel topology on the spectrum of the typically nonregular multiplier algebra. Our investigation involves various closed...
Sufficient spectral conditions for the existence of a spectral decomposition of an operator T defined on a Banach space X, with countable spectrum, are given. We apply the results to obtain the West decomposition of certain Riesz operators.