Displaying 421 – 440 of 451

Showing per page

Time asymptotic description of an abstract Cauchy problem solution and application to transport equation

Boulbeba Abdelmoumen, Omar Jedidi, Aref Jeribi (2014)

Applications of Mathematics

In this paper, we study the time asymptotic behavior of the solution to an abstract Cauchy problem on Banach spaces without restriction on the initial data. The abstract results are then applied to the study of the time asymptotic behavior of solutions of an one-dimensional transport equation with boundary conditions in L 1 -space arising in growing cell populations and originally introduced by M. Rotenberg, J. Theoret. Biol. 103 (1983), 181–199.

Time-dependent perturbation theory for abstract evolution equations of second order

Yuhua Lin (1998)

Studia Mathematica

A condition on a family B ( t ) : t [ 0 , T ] of linear operators is given under which the inhomogeneous Cauchy problem for u"(t)=(A+ B(t))u(t) + f(t) for t ∈ [0,T] has a unique solution, where A is a linear operator satisfying the conditions characterizing infinitesimal generators of cosine families except the density of their domains. The result obtained is applied to the partial differential equation u t t = u x x + b ( t , x ) u x ( t , x ) + c ( t , x ) u ( t , x ) + f ( t , x ) f o r ( t , x ) [ 0 , T ] × [ 0 , 1 ] , u ( t , 0 ) = u ( t , 1 ) = 0 f o r t [ 0 , T ] , u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = v 0 ( x ) f o r x [ 0 , 1 ] in the space of continuous functions on [0,1].

Triangular Models and Asymptotics of Continuous Curves with Bounded and Unbounded Semigroup Generators

Kirchev, Kiril, Borisova, Galina (2005)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 47A48, Secondary 60G12.In this paper classes of K^r -operators are considered – the classes of bounded and unbounded operators A with equal domains of A and A*, finite dimensional imaginary parts and presented as a coupling of a dissipative operator and an antidissipative one with real absolutely continuous spectra and the class of unbounded dissipative K^r -operators A with different domains of A and A* and with real absolutely continuous spectra....

Two notes on eventually differentiable families of operators

Tomáš Bárta (2010)

Commentationes Mathematicae Universitatis Carolinae

In the first note we show for a strongly continuous family of operators ( T ( t ) ) t 0 that if every orbit t T ( t ) x is differentiable for t > t x , then all orbits are differentiable for t > t 0 with t 0 independent of x . In the second note we give an example of an eventually differentiable semigroup which is not differentiable on the same interval in the operator norm topology.

Unbounded well-bounded operators, strongly continuous semigroups and the Laplace transform

Ralph deLaubenfels (1992)

Studia Mathematica

Suppose A is a (possibly unbounded) linear operator on a Banach space. We show that the following are equivalent. (1) A is well-bounded on [0,∞). (2) -A generates a strongly continuous semigroup e - s A s 0 such that ( 1 / s 2 ) e - s A s > 0 is the Laplace transform of a Lipschitz continuous family of operators that vanishes at 0. (3) -A generates a strongly continuous differentiable semigroup e - s A s 0 and ∃ M < ∞ such that H n ( s ) ( k = 0 n ( s k A k ) / k ! ) e - s A M , ∀s > 0, n ∈ ℕ ∪ 0. (4) -A generates a strongly continuous holomorphic semigroup e - z A R e ( z ) > 0 that is O(|z|) in all...

Universal Jamison spaces and Jamison sequences for C₀-semigroups

Vincent Devinck (2013)

Studia Mathematica

An increasing sequence ( n k ) k 0 of positive integers is said to be a Jamison sequence if for every separable complex Banach space X and every T ∈ ℬ(X) which is partially power-bounded with respect to ( n k ) k 0 , the set σ p ( T ) is at most countable. We prove that for every separable infinite-dimensional complex Banach space X which admits an unconditional Schauder decomposition, and for any sequence ( n k ) k 0 which is not a Jamison sequence, there exists T ∈ ℬ(X) which is partially power-bounded with respect to ( n k ) k 0 and has the...

Wasserstein metric and subordination

Philippe Clément, Wolfgang Desch (2008)

Studia Mathematica

Let ( X , d X ) , ( Ω , d Ω ) be complete separable metric spaces. Denote by (X) the space of probability measures on X, by W p the p-Wasserstein metric with some p ∈ [1,∞), and by p ( X ) the space of probability measures on X with finite Wasserstein distance from any point measure. Let f : Ω p ( X ) , ω f ω , be a Borel map such that f is a contraction from ( Ω , d Ω ) into ( p ( X ) , W p ) . Let ν₁,ν₂ be probability measures on Ω with W p ( ν , ν ) finite. On X we consider the subordinated measures μ i = Ω f ω d ν i ( ω ) . Then W p ( μ , μ ) W p ( ν , ν ) . As an application we show that the solution measures ϱ α ( t ) to the partial...

Weighted pseudo almost automorphic functions with applications to abstract dynamic equations on time scales

Chao Wang, Yongkun Li (2013)

Annales Polonici Mathematici

We propose a concept of weighted pseudo almost automorphic functions on almost periodic time scales and study some important properties of weighted pseudo almost automorphic functions on almost periodic time scales. As applications, we obtain the conditions for the existence of weighted pseudo almost automorphic mild solutions to a class of semilinear dynamic equations on almost periodic time scales.

Well-posedness of second order degenerate differential equations in vector-valued function spaces

Shangquan Bu (2013)

Studia Mathematica

Using known results on operator-valued Fourier multipliers on vector-valued function spaces, we give necessary or sufficient conditions for the well-posedness of the second order degenerate equations (P₂): d/dt (Mu’)(t) = Au(t) + f(t) (0 ≤ t ≤ 2π) with periodic boundary conditions u(0) = u(2π), (Mu’)(0) = (Mu’)(2π), in Lebesgue-Bochner spaces L p ( , X ) , periodic Besov spaces B p , q s ( , X ) and periodic Triebel-Lizorkin spaces F p , q s ( , X ) , where A and M are closed operators in a Banach space X satisfying D(A) ⊂ D(M). Our results...

Wentzell Boundary Conditions in the Nonsymmetric Case

A. Favini, G. R. Goldstein, J. A. Goldstein, S. Romanelli (2008)

Mathematical Modelling of Natural Phenomena

Let L be a nonsymmetric second order uniformly elliptic operator with generalWentzell boundary conditions. We show that a suitable version of L generates a quasicontractive semigroup on an Lp space that incorporates both the underlying domain and its boundary. This extends the earlier work of the authors on the symmetric case.

α-times integrated semigroups: local and global

Miao Li, Quan Zheng (2003)

Studia Mathematica

We investigate the relations between local α-times integrated semigroups and (α + 1)-times integrated Cauchy problems, and then the relations between global α-times integrated semigroups and regularized semigroups.

Currently displaying 421 – 440 of 451