Asymptotically commuting families of operators.
We examine the asymptotic, or large-time, behaviour of the semigroup kernel associated with a finite sum of homogeneous subcoercive operators acting on a connected Lie group of polynomial growth. If the group is nilpotent we prove that the kernel is bounded by a convolution of two Gaussians whose orders correspond to the highest and lowest orders of the homogeneous subcoercive components of the generator. Moreover we establish precise asymptotic estimates on the difference of the kernel and the...
Given a Banach algebra ℱ of complex-valued functions and a closed, linear (possibly unbounded) densely defined operator A, on a Banach space, with an ℱ functional calculus we present two ways of extending this functional calculus to a much larger class of functions with little or no growth conditions. We apply this to spectral operators of scalar type, generators of bounded strongly continuous groups and operators whose resolvent set contains a half-line. For f in this larger class, one construction...