Around Widder’s characterization of the Laplace transform of an element of
Let ϰ be a positive, continuous, submultiplicative function on such that for some ω ∈ ℝ, α ∈ and . For every λ ∈ (ω,∞) let for . Let be the space of functions Lebesgue integrable on with weight , and let E be a Banach space. Consider the map . Theorem 5.1 of the present paper characterizes the range of the linear map defined on , generalizing a result established by B. Hennig and F. Neubrander for . If ϰ ≡ 1 and E =ℝ then Theorem 5.1 reduces to D. V. Widder’s characterization...