Sur les inégalités de Sobolev logarithmiques, II
D. Bakry, Paul-André Meyer (1982)
Séminaire de probabilités de Strasbourg
B. Malgrange (1973/1974)
Séminaire Équations aux dérivées partielles (Polytechnique)
Rolando Rebolledo (1996)
Annales mathématiques Blaise Pascal
Falaleev, M.V., Korobova, O.V. (2008)
Sibirskij Matematicheskij Zhurnal
J. M. A. M. Van Neerven, B. de Pagter (1994)
Compositio Mathematica
K. Magnusson, A. J. Pritchard, M. D. Quinn (1985)
Banach Center Publications
Yuri Lyubich (1997)
Banach Center Publications
Mel'nikova, I.V. (2001)
Sibirskij Matematicheskij Zhurnal
Anna Zappa (1978)
Colloquium Mathematicae
V. G. Miller (2007)
Banach Center Publications
We provide a survey of properties of the Cesàro operator on Hardy and weighted Bergman spaces, along with its connections to semigroups of weighted composition operators. We also describe recent developments regarding Cesàro-like operators and indicate some open questions and directions of future research.
J. Ginibre, G. Velo (1980)
Annales de l'I.H.P. Physique théorique
P. de La Harpe (1972)
Compositio Mathematica
Joachim Escher (1994)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Giorgio Metafune, Jan Prüss, Abdelaziz Rhandi, Roland Schnaubelt (2002)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
We show that the domain of the Ornstein-Uhlenbeck operator on
M. Fisher (1972)
Semigroup forum
Li, Yaqin, Gray, W.Steven (2006)
International Journal of Mathematics and Mathematical Sciences
El-Borai, Mahmoud M. (2004)
Boletín de la Asociación Matemática Venezolana
H.L. Vasudeva, A.B. Buche (1976)
Aequationes mathematicae
H.L. Vasudeva, A.B. Buche (1975)
Aequationes mathematicae
Esteban Andruchow, Eduardo Chiumiento, Gabriel Larotonda (2013)
Studia Mathematica
Let Ω be an open subset of ℝⁿ. Let L² = L²(Ω,dx) and H¹₀ = H¹₀(Ω) be the standard Lebesgue and Sobolev spaces of complex-valued functions. The aim of this paper is to study the group of invertible operators on H¹₀ which preserve the L²-inner product. When Ω is bounded and ∂Ω is smooth, this group acts as the intertwiner of the H¹₀ solutions of the non-homogeneous Helmholtz equation u - Δu = f, . We show that is a real Banach-Lie group, whose Lie algebra is (i times) the space of symmetrizable operators....