Almost periodic solutions of higher order differential equations on Hilbert spaces.
We investigate the characterization of almost periodic C-semigroups, via the Hille-Yosida space Z₀, in case of R(C) being non-dense. Analogous results are obtained for C-cosine functions. We also discuss the almost periodicity of integrated semigroups.
We introduce the notion of almost-distribution cosine functions in a setting similar to that of distribution semigroups defined by Lions. We prove general results on equivalence between almost-distribution cosine functions and α-times integrated cosine functions.
A Banach algebra homomorphism on the convolution algebra of integrable functions is the essence of Kisyński's equivalent formulation of the Hille-Yosida theorem for analytic semigroups. For the study of implicit evolution equations the notion of empathy happens to be more appropriate than that of semigroup. This approach is based upon the intertwining of two families of evolution operators and two families of pseudo-resolvents. In this paper we show that the Kisyński approach can be adapted to empathy...
In the present paper integral continuity theorems for solutions of stochastic evolution equations of parabolic type on unbounded time intervals are established. For this purpose, the asymptotic stability of stochastic partial differential equations is investigated, the results obtained being of independent interest. Stochastic evolution equations are treated as equations in Hilbert spaces within the framework of the semigroup approach.
We construct a semigroup of bounded idempotents with no nontrivial invariant closed subspace. This answers a question which was open for some time.
The purpose of this paper is to investigate the problem of finding a common element of the set of solutions for mixed equilibrium problems, the set of solutions of the variational inclusion problems for inverse strongly monotone mappings and the set of common fixed points for an infinite family of strictly pseudo-contractive mappings in the setting of Hilbert spaces. We prove the strong convergence theorem by using the viscosity approximation method for finding the common element of the above four...
In this paper we study Markov semigroups generated by Hörmander-Dunkl type operators on Heisenberg group.