Sur la solution bornée et presque périodique des inéquations d'évolution paraboliques
Dans cette article on décrit le spectre semi-classique d’un opérateur de Schrödinger sur avec un potentiel type double puits. La description qu’on donne est celle du spectre autour du maximum local du potentiel. Dans la classification des singularités de l’application moment d’un système intégrable, le double puits représente le cas des singularités non-dégénérées de type hyperbolique.
This paper is related to the spectral stability of traveling wave solutions of partial differential equations. In the first part of the paper we use the Gohberg-Rouche Theorem to prove equality of the algebraic multiplicity of an isolated eigenvalue of an abstract operator on a Hilbert space, and the algebraic multiplicity of the eigenvalue of the corresponding Birman-Schwinger type operator pencil. In the second part of the paper we apply this result...
We prove the existence of the density of states of a local, self-adjoint operator determined by a coercive, almost periodic quadratic form on . The support of the density coincides with the spectrum of the operator in .
We establish necessary and sufficient conditions on the real- or complex-valued potential defined on for the relativistic Schrödinger operator to be bounded as an operator from the Sobolev space to its dual .