Regularized functional calculi, semigroups, and cosine functions for pseudodifferential operators.
Let be a complete noncompact manifold of dimension at least 3 and an asymptotically conic metric on , in the sense that compactifies to a manifold with boundary so that becomes a scattering metric on . We study the resolvent kernel and Riesz transform of the operator , where is the positive Laplacian associated to and is a real potential function smooth on and vanishing at the boundary.In our first paper we assumed that has neither zero modes nor a zero-resonance and showed...
We consider the 3D Schrödinger operator where , is a magnetic potential generating a constant magneticfield of strength , and is a short-range electric potential which decays superexponentially with respect to the variable along the magnetic field. We show that the resolvent of admits a meromorphic extension from the upper half plane to an appropriate Riemann surface , and define the resonances of as the poles of this meromorphic extension. We study their distribution near any fixed...
Let E,F be Banach spaces where F = E’ or vice versa. If F has the approximation property, then the space of nuclearly entire functions of bounded type, , and the space of exponential type functions, Exp(F), form a dual pair. The set of convolution operators on (i.e. the continuous operators that commute with all translations) is formed by the transposes , φ ∈ Exp(F), of the multiplication operators φ :ψ ↦ φ ψ on Exp(F). A continuous operator T on is PDE-preserving for a set ℙ ⊆ Exp(F) if it...
The scattering matrix is defined on a perturbed stratified medium. For a class of perturbations, its main part at fixed energy is a Fourier integral operator on the sphere at infinity. Proving this is facilitated by developing a refined limiting absorption principle. The symbol of the scattering matrix determines the asymptotics of a large class of perturbations.
Strong asymptotic completeness is shown for a pair of Schrödinger type operators on a cylindrical Lipschitz domain. A key ingredient is a limiting absorption principle valid in a scale of weighted (local) Sobolev spaces with respect to the uniform topology. The results are based on a refined version of Mourre’s method within the context of pseudo-selfadjoint operators.
Let be a second order divergence form elliptic operator with complex bounded measurable coefficients. The operators arising in connection with , such as the heat semigroup and Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from their counterparts built upon the Laplacian. The current paper aims at a thorough description of the properties of such operators in , Sobolev, and some new Hardy spaces naturally associated to . First, we show that the...
Let be the symmetric operator given by the restriction of to , where is a self-adjoint operator on the Hilbert space and is a linear dense set which is closed with respect to the graph norm on , the operator domain of . We show that any self-adjoint extension of such that can be additively decomposed by the sum , where both the operators and take values in the strong dual of . The operator is the closed extension of to the whole whereas is explicitly written in terms...