Displaying 41 – 60 of 233

Showing per page

Composition of some singular Fourier integral operators and estimates for restricted X -ray transforms

Allan Greenleaf, Gunther Uhlmann (1990)

Annales de l'institut Fourier

We establish a composition calculus for Fourier integral operators associated with a class of smooth canonical relations C ( T * X 0 ) × ( T * Y 0 ) . These canonical relations, which arise naturally in integral geometry, are such that π : C T * Y is a Whitney fold and ρ : C T * X is a blow-down mapping. If A I m ( C ) , B I m ' ( C t ) , then B A I m + m ' , 0 ( Δ , Λ ) a class of pseudodifferential operators with singular symbols. From this follows L 2 boundedness of A with a loss of 1/4 derivative.

Differences of weighted composition operators from Hardy space to weighted-type spaces on the unit ball

Ze-Hua Zhou, Yu-Xia Liang (2012)

Czechoslovak Mathematical Journal

In this paper, we limit our analysis to the difference of the weighted composition operators acting from the Hardy space to weighted-type space in the unit ball of N , and give some necessary and sufficient conditions for their boundedness or compactness. The results generalize the corresponding results on the single weighted composition operators and on the differences of composition operators, for example, M. Lindström and E. Wolf: Essential norm of the difference of weighted composition operators....

Discrete Spectrum of the Periodic Schrödinger Operator with a Variable Metric Perturbed by a Nonnegative Potential

M. Sh. Birman, V. A. Sloushch (2010)

Mathematical Modelling of Natural Phenomena

We study discrete spectrum in spectral gaps of an elliptic periodic second order differential operator in L2(ℝd) perturbed by a decaying potential. It is assumed that a perturbation is nonnegative and has a power-like behavior at infinity. We find asymptotics in the large coupling constant limit for the number of eigenvalues of the perturbed operator that have crossed a given point inside the gap or the edge of the gap. The corresponding asymptotics...

Eigenvalues of Hille-Tamarkin operators and geometry of Banach function spaces

Thomas Kühn, Mieczysław Mastyło (2011)

Studia Mathematica

We investigate how the asymptotic eigenvalue behaviour of Hille-Tamarkin operators in Banach function spaces depends on the geometry of the spaces involved. It turns out that the relevant properties are cotype p and p-concavity. We prove some eigenvalue estimates for Hille-Tamarkin operators in general Banach function spaces which extend the classical results in Lebesgue spaces. We specialize our results to Lorentz, Orlicz and Zygmund spaces and give applications to Fourier analysis. We are also...

Étude d'une fonction remarquable associée aux moyennes de convolution

Christian Even (1999)

Annales de l'institut Fourier

Dans cet article nous étudions la série génératrice des poids alternés d’une moyenne de convolution induite par un processus de diffusion. Nous montrons que celle-ci est une fonction méromorphe, naturellement liée à un certain opérateur compact. Cette fonction est simplement égale à d ( - z ) / d ( z ) , lorsque le déterminant de Fredholm d ( z ) de cet opérateur existe, et nous la précisons dans les autres cas.

Currently displaying 41 – 60 of 233