Local expansions and accretive mappings.
This paper deals with nonlinear feedback stabilization problem of a flexible beam clamped at a rigid body and free at the other end. We assume that there is no damping and the feedback law proposed here consists of a nonlinear control torque applied to the rigid body and either a boundary control moment or a nonlinear boundary control force or both of them applied to the free end of the beam. This nonlinear feedback, which insures the exponential decay of the beam vibrations, extends the linear...
On an arbitrary reflexive Banach space, we build asymptotic observers for an abstract class of nonlinear control systems with possible compact outputs. An important part of this paper is devoted to various examples, where we discuss the existence of persistent inputs which make the system observable. These results make a wide generalization to a nonlinear framework of previous works on the observation problem in infinite dimension (see [11, 18, 22, 26, 27, 38, 40] and other references therein).
On an arbitrary reflexive Banach space, we build asymptotic observers for an abstract class of nonlinear control systems with possible compact outputs. An important part of this paper is devoted to various examples, where we discuss the existence of persistent inputs which make the system observable. These results make a wide generalization to a nonlinear framework of previous works on the observation problem in infinite dimension (see [11,18,22,26,27,38,40] and other references therein).
The existence, uniqueness and asymptotic stability of weak solutions of functional-differential abstract nonlocal Cauchy problems in a Banach space are studied. Methods of m-accretive operators and the Banach contraction theorem are applied.
The Linear-Quadratic (LQ) optimal control problem is studied for a class of first-order hyperbolic partial differential equation models by using a nonlinear infinite-dimensional (distributed parameter) Hilbert state-space description. First the dynamical properties of the linearized model around some equilibrium profile are studied. Next the LQ-feedback operator is computed by using the corresponding operator Riccati algebraic equation whose solution is obtained via a related matrix Riccati differential...