Strong convergence of iterative schemes for zeros of accretive operators in reflexive Banach spaces.
We prove existence (uniqueness is easy) of a weak solution to a boundary value problem for an equation like where the function is only supposed to be locally lipschitz continuous. In order to replace the lack of compactness in t on v<1, we use nonlinear semigroup theory.
Résumé. On présente une fonction continue f: c₀ → c₀ qui satisfait à une condition lipschitzienne par rapport à la mesure de non-compacité de Hausdorff (ou Kuratowski), mais telle que f n'est pas la somme d'une fonction dissipative et d'une fonction compacte. Cet exemple attache de l'importance au théorème d'existence de Sabina Schmidt (1989) pour des équations différentielles dans les espaces de Banach.