General iterative algorithm for nonexpansive semigroups and variational inequalities in Hilbert spaces.
In this paper, the authors prove some existence results of solutions for a new class of generalized bi-quasi-variational inequalities (GBQVI) for quasi-pseudo-monotone type II and strongly quasi-pseudo-monotone type II operators defined on compact sets in locally convex Hausdorff topological vector spaces. In obtaining these results on GBQVI for quasi-pseudo-monotone type II and strongly quasi-pseudo-monotone type II operators, we shall use Chowdhury and Tan’s generalized version [3] of Ky Fan’s...
This work is concerned with the eigenvalue problem for a monotone and homogenous self-mapping of a finite dimensional positive cone. Paralleling the classical analysis of the (linear) Perron–Frobenius theorem, a verifiable communication condition is formulated in terms of the successive compositions of , and under such a condition it is shown that the upper eigenspaces of are bounded in the projective sense, a property that yields the existence of a nonlinear eigenvalue as well as the projective...
∗ The final version of this paper was sent to the editor when the author was supported by an ARC Small Grant of Dr. E. Tarafdar.Existence theorems of generalized variational inequalities and generalized complementarity problems are obtained in topological vector spaces for demi operators which are upper hemicontinuous along line segments in a convex set X. Fixed point theorems are also given in Hilbert spaces for set-valued operators T which are upper hemicontinuous along line segments in X such...