The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show that every subset of L¹[0,1] that contains the nontrivial intersection of an order interval and finitely many hyperplanes fails to have the fixed point property for nonexpansive mappings.
In this paper we deal with the Cauchy problem for differential inclusions governed by -accretive operators in general Banach spaces. We are interested in finding the sufficient conditions for the existence of integral solutions of the problem , , where is an -accretive operator, and is a continuous, but non-compact perturbation, satisfying some additional conditions.
Let H be a Hilbert space and C ⊂ H be closed and convex. The mapping P: H → C known as the nearest point projection is nonexpansive (1-lipschitzian). We observed that, the natural question: "Are there nonexpansive projections Q: H → C other than P?" is neglected in the literature. Also, the answer is not often present in the "folklore" of the Hilbert space theory. We provide here the answer and discuss some facts connected with the subject.
We study various aspects of nonexpansive retracts and retractions in certain Banach and metric spaces, with special emphasis on the compact nonexpansive envelope property.
Currently displaying 1 –
20 of
26