Eigenwertaussagen für kompakte und kondensierende mengenwertige Abbildungen in topologischen Vektorräumen
We define a spectrum for Lipschitz continuous nonlinear operators in Banach spaces by means of a certain kind of "pseudo-adjoint" and study some of its properties.
We consider some discrete and continuous dynamics in a Banach space involving a non expansive operator J and a corresponding family of strictly contracting operators Φ (λ, x): = λ J(x) for λ ∈ ] 0,1] . Our motivation comes from the study of two-player zero-sum repeated games, where the value of the n-stage game (resp. the value of the λ-discounted game) satisfies the relation vn = Φ(, ) (resp. = Φ(λ, )) where J is the Shapley operator of the game. We study the evolution equation u'(t) =...
In this paper we introduce a property and use this property to prove some common fixed point theorems in b-metric space. We also give some fixed point results on b-metric spaces endowed with an arbitrary binary relation which can be regarded as consequences of our main results. As applications, we applying our result to prove the existence of a common solution for the following system of integral equations: x (t) = ∫ a b K 1 (t,r,x(r)) dr, x (t) = ∫ a b K 2 (t,r,x(r)) dr, where a, b...
In this paper we prove an existence theorem for the Hammerstein integral equation , where the integral is taken in the sense of Pettis. In this theorem continuity assumptions for f are replaced by weak sequential continuity and the compactness condition is expressed in terms of the measures of weak noncompactness. Our equation is considered in general Banach spaces.