Parallel methods in image recovery by projections onto convex sets
Let H be a real Hilbert space and T be a maximal monotone operator on H. A well-known algorithm, developed by R. T. Rockafellar [16], for solving the problem (P) ”To find x ∈ H such that 0 ∈ T x” is the proximal point algorithm. Several generalizations have been considered by several authors: introduction of a perturbation, introduction of a variable metric in the perturbed algorithm, introduction of a pseudo-metric in place of the classical regularization, . . . We summarize some of these extensions...
We study a multilinear fixed-point equation in a closed ball of a Banach space where the application is 1-Lipschitzian: existence, uniqueness, approximations, regularity.
The notion of proximal normal structure is introduced and used to study mappings that are "relatively nonexpansive" in the sense that they are defined on the union of two subsets A and B of a Banach space X and satisfy ∥ Tx-Ty∥ ≤ ∥ x-y∥ for all x ∈ A, y ∈ B. It is shown that if A and B are weakly compact and convex, and if the pair (A,B) has proximal normal structure, then a relatively nonexpansive mapping T: A ∪ B → A ∪ B satisfying (i) T(A) ⊆ B and T(B) ⊆ A, has a proximal point in the sense that...