The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Résumé. On présente une fonction continue f: c₀ → c₀ qui satisfait à une condition lipschitzienne par rapport à la mesure de non-compacité de Hausdorff (ou Kuratowski), mais telle que f n'est pas la somme d'une fonction dissipative et d'une fonction compacte. Cet exemple attache de l'importance au théorème d'existence de Sabina Schmidt (1989) pour des équations différentielles dans les espaces de Banach.
In this Note we first establish a result on the structure of the set of fixed points of a multi-valued contraction with convex values. As a consequence of this result, we then obtain the following theorem: Let , be two real Banach spaces and let be a continuous linear operator from onto . Put: . Then, for every and every lipschitzian operator , with Lipschitz constant such that , the set is non-empty and arc wise connected.
Currently displaying 1 –
3 of
3