Some common fixed point theorems for selfmappings in uniform space.
In this paper, we establish some common fixed point theorems for selfmappings of a uniform space by employing both the concepts of an A-distance and an E-distance introduced by Aamri and El Moutawakil [1] and two contractive conditions of integral type. Our results are generalizations and extensions of the classical Banach’s fixed point theorem of [2, 3, 19], some results of Aamri and El Moutawakil [1], Theorem 2.1 of Branciari [5] as well as a result of Jungck [7].
In this paper, we prove some common fixed point theorems for occasionally weakly compatible mappings in Menger spaces. An example is also given to illustrate the main result. As applications to our results, we obtain the corresponding fixed point theorems in metric spaces. Our results improve and extend many known results existing in the literature.
In this paper, we establish some generalizations to approximate common fixed points for selfmappings in a normed linear space using the modified Ishikawa iteration process with errors in the sense of Liu [10] and Rafiq [14]. We use a more general contractive condition than those of Rafiq [14] to establish our results. Our results, therefore, not only improve a multitude of common fixed point results in literature but also generalize some of the results of Berinde [3], Rhoades [15] and recent results...
We study some qualitative features like convergence, stability and data dependency for Picard-S iteration method of a quasi-strictly contractive operator under weaker conditions imposed on parametric sequences in the mentioned method. We compare the rate of convergence among the Mann, Ishikawa, Noor, normal-S, and Picard-S iteration methods for the quasi-strictly contractive operators. Results reveal that the Picard-S iteration method converges fastest to the fixed point of quasi-strictly contractive...
In this paper we examine the set of weakly continuous solutions for a Volterra integral equation in Henstock-Kurzweil-Pettis integrability settings. Our result extends those obtained in several kinds of integrability settings. Besides, we prove some new fixed point theorems for function spaces relative to the weak topology which are basic in our considerations and comprise the theory of differential and integral equations in Banach spaces.