Displaying 721 – 740 of 1323

Showing per page

Measures of noncompactness and normal structure in Banach spaces

J. García-Falset, A. Jiménez-Melado, E. Lloréns-Fuster (1994)

Studia Mathematica

Sufficient conditions for normal structure of a Banach space are given. One of them implies reflexivity for Banach spaces with an unconditional basis, and also for Banach lattices.

Measures of noncompactness in locally convex spaces and fixed point theory for the sum of two operators on unbounded convex sets

Józef Banaś, Afif Ben Amar (2013)

Commentationes Mathematicae Universitatis Carolinae

In this paper we prove a collection of new fixed point theorems for operators of the form T + S on an unbounded closed convex subset of a Hausdorff topological vector space ( E , Γ ) . We also introduce the concept of demi- τ -compact operator and τ -semi-closed operator at the origin. Moreover, a series of new fixed point theorems of Krasnosel’skii type is proved for the sum T + S of two operators, where T is τ -sequentially continuous and τ -compact while S is τ -sequentially continuous (and Φ τ -condensing, Φ τ -nonexpansive or nonlinear contraction...

Metric spaces admitting only trivial weak contractions

Richárd Balka (2013)

Fundamenta Mathematicae

If (X,d) is a metric space then a map f: X → X is defined to be a weak contraction if d(f(x),f(y)) < d(x,y) for all x,y ∈ X, x ≠ y. We determine the simplest non-closed sets X ⊆ ℝⁿ in the sense of descriptive set-theoretic complexity such that every weak contraction f: X → X is constant. In order to do so, we prove that there exists a non-closed F σ set F ⊆ ℝ such that every weak contraction f: F → F is constant. Similarly, there exists a non-closed G δ set G ⊆ ℝ such that every weak contraction...

Minimax theorems without changeless proportion

Liang-Ju Chu, Chi-Nan Tsai (2003)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The so-called minimax theorem means that if X and Y are two sets, and f and g are two real-valued functions defined on X×Y, then under some conditions the following inequality holds: i n f y Y s u p x X f ( x , y ) s u p x X i n f y Y g ( x , y ) . We will extend the two functions version of minimax theorems without the usual condition: f ≤ g. We replace it by a milder condition: s u p x X f ( x , y ) s u p x X g ( x , y ) , ∀y ∈ Y. However, we require some restrictions; such as, the functions f and g are jointly upward, and their upper sets are connected. On the other hand, by using some properties...

Multiple positive solutions for a second order delay boundary value problem on the half-line

K. G. Mavridis, Ch. G. Philos, P. Ch. Tsamatos (2006)

Annales Polonici Mathematici

Second order nonlinear delay differential equations are considered, and Krasnosel'skiĭ's fixed point theorem is used to establish a result on the existence of positive solutions of a boundary value problem on the half-line. This result can be used to guarantee the existence of multiple positive solutions. A specification of the result obtained to the case of second order nonlinear ordinary differential equations as well as to a particular case of second order nonlinear delay differential equations...

Multiplicity results for sign-changing solutions of an operator equation in ordered Banach space

Xian Xu, Bingjin Wang (2009)

Mathematica Bohemica

In this paper, we prove some multiplicity results for sign-changing solutions of an operator equation in an ordered Banach space. The methods to show the main results of the paper are to associate a fixed point index with a strict upper or lower solution. The results can be applied to a wide variety of boundary value problems to obtain multiplicity results for sign-changing solutions.

Currently displaying 721 – 740 of 1323