Some sufficient conditions for fixed points of multivalued nonexpansive mappings.
We prove some stability and hyperstability results for a generalization of the well known Fréchet functional equation, stemming from one of the characterizations of the inner product spaces. As the main tool we use a fixed point theorem for some function spaces. We end the paper with some new inequalities characterizing the inner product spaces.
We study the asymptotic behaviour of discrete time processes which are products of time dependent transformations defined on a complete metric space. Our sufficient condition is applied to products of Markov operators corresponding to stochastically perturbed dynamical systems and fractals.
In this paper, we prove the stability of Noor iteration considered in Banach spaces by employing the notion of a general class of functions introduced by Bosede and Rhoades [6]. We also establish similar result on Ishikawa iteration as a special case. Our results improve and unify some of the known stability results in literature.
We are concerned with first order set-valued problems with very general boundary value conditions involving the Stieltjes derivative with respect to a left-continuous nondecreasing function , a Carathéodory multifunction and a continuous . Using appropriate notions of lower and upper solutions, we prove the existence of solutions via a fixed point result for condensing mappings. In the periodic single-valued case, combining an existence theory for the linear case with a recent result involving...
The paper introduces a notion of strictly convex metric space and strictly convex metric space with round balls. These objects generalize the well known concept of strictly convex Banach space. We prove some fixed point theorems in strictly convex metric spaces with round balls.