Strong convergence theorems on iterative methods for strictly pseudo-contractive mappings.
In this paper, we use a modification of Krasnoselskii’s fixed point theorem introduced by Burton (see [Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem. Nonlinear Stud., 9 (2002), 181–190.] Theorem 3) to obtain stability results of the zero solution of the totally nonlinear neutral differential equation with variable delay The stability of the zero solution of this eqution provided that . The Caratheodory condition is used for the functions and .
In this paper, we propose the concept of Suzuki type fuzzy -contractive mappings, which is a generalization of Fuzzy -contractive mappings initiated in the article [S. Shukla, D. Gopal, W. Sintunavarat, A new class of fuzzy contractive mappings and fixed point theorems, Fuzzy Sets and Systems 350 (2018)85-95]. For this type of contractions suitable conditions are framed to ensure the existence of fixed point in -complete as well as -complete fuzzy metric spaces. A comprehensive set of examples...
By a dynamical system we mean the action of the semigroup on a metrizable topological space induced by a continuous selfmap . Let denote the set of all compatible metrics on the space . Our main objective is to show that a selfmap of a compact space is a Banach contraction relative to some if and only if there exists some which, regarded as a -cocycle of the system , is a coboundary.