Irregular convex sets with fixed-point property for nonexpansive mappings
In this paper we are concerned with a general class of positive linear operators of discrete type. Based on the results of the weakly Picard operators theory our aim is to study the convergence of the iterates of the defined operators and some approximation properties of our class as well. Some special cases in connection with binomial type operators are also revealed.
The cycle time of an operator on gives information about the long term behaviour of its iterates. We generalise this notion to operators on symmetric cones. We show that these cones, endowed with either Hilbert’s projective metric or Thompson’s metric, satisfy Busemann’s definition of a space of non- positive curvature. We then deduce that, on a strictly convex symmetric cone, the cycle time exists for all maps which are non-expansive in both these metrics. We also review an analogue for the Hilbert...
In this paper, we introduce an iterative algorithm for finding a common element of the set of solutions of a mixed equilibrium problem, the set of fixed points of a nonexpansive mapping, and the the set of solutions of a variational inclusion in a real Hilbert space. Furthermore, we prove that the proposed iterative algorithm converges strongly to a common element of the above three sets, which is a solution of a certain optimization problem related to a strongly positive bounded linear operator....