Common fixed points of a finite family of asymptotically pseudocontractive maps.
This work is considered as a continuation of [19,20,24]. The concepts of -compatibility and sub-compatibility of Li-Shan [19, 20] between a set-valued mapping and a single-valued mapping are used to establish some common fixed point theorems of Greguš type under a -type contraction on convex metric spaces. Extensions of known results, especially theorems by Fisher and Sessa [11] (Theorem B below) and Jungck [16] are thereby obtained. An example is given to support our extension.
Let K be a closed convex cone with nonempty interior in a real Banach space and let cc(K) denote the family of all nonempty convex compact subsets of K. If F t: t ≥ 0 is a regular cosine family of continuous additive set-valued functions F t: K → cc(K) such that x ∈ F t(x) for t ≥ 0 and x ∈ K, then .
We investigate the long-time behaviour of solutions to the Korteweg-de Vries equation with a zero order dissipation and an additional forcing term, when the space variable varies over , and prove that it is described by a maximal compact attractor in .