Existence theorems for boundary value problems for strongly nonlinear elliptic systems.
We present two existence results for the Dirichlet elliptic inclusion with an upper semicontinuous multivalued right-hand side in exponential-type Orlicz spaces involving a vector Laplacian, subject to Dirichlet boundary conditions on a domain Ω⊂ ℝ². The first result is obtained via the multivalued version of the Leray-Schauder principle together with the Nakano-Dieudonné sequential weak compactness criterion. The second result is obtained by using the nonsmooth variational technique together with...
We show that a Banach space X is an ℒ₁-space (respectively, an -space) if and only if it has the lifting (respectively, the extension) property for polynomials which are weakly continuous on bounded sets. We also prove that X is an ℒ₁-space if and only if the space of m-homogeneous scalar-valued polynomials on X which are weakly continuous on bounded sets is an -space.