Some results on coincidence and fixed point theorems for generalized contraction type mappings.
Using isometric embedding of metric trees into Banach spaces, this paper will investigate barycenters, type and cotype, and various measures of compactness of metric trees. A metric tree (T, d) is a metric space such that between any two of its points there is a unique arc that is isometric to an interval in ℝ. We begin our investigation by examining isometric embeddings of metric trees into Banach spaces. We then investigate the possible images x₀ = π((x₁ + ... + xₙ)/n), where π is a contractive...
In this paper, the concept of multi-valued weak contraction of Berinde and Berinde [8] for the Picard iteration in a complete metric space is extended to the case of multi-valued weak contraction for the Jungck iteration in a complete b-metric space. While our main results generalize the recent results of Berinde and Berinde [8], they also extend, improve and unify several classical results pertainning to single and multi-valued contractive mappings in the fixed point theory. Our results also improve...
In this paper, we obtain some stability results for the Picard iteration process for one and two metrics in complete metric space by using different contractive definitions which are more general than those of Berinde [Berinde, V.: On the stability of some fixed point procedures. Bul. Stiint. Univ. Baia Mare, Ser. B, Matematica–Informatica 18, 1 (2002), 7–14.], Imoru and Olatinwo [Imoru, C. O., Olatinwo, M. O.: On the stability of Picard and Mann iteration processes. Carpathian J. Math. 19, 2 (2003),...
In this paper, we obtain some stability results for Picard and Mann iteration processes in metric space and normed linear space respectively, using two different contractive definitions which are more general than those of Harder and Hicks [4], Rhoades [10, 11], Osilike [8], Osilike and Udomene [9], Berinde [1, 2], Imoru and Olatinwo [5] and Imoru et al [6].Our results are generalizations of some results of Harder and Hicks [4], Rhoades [10, 11], Osilike [8], Osilike and Udomene [9], Berinde [1,...
In this paper a new class of mappings, known as locally -strongly -accretive mappings, where and have special meanings, is introduced. This class of mappings constitutes a generalization of the well-known monotone mappings, accretive mappings and strongly -accretive mappings. Subsequently, the above notion is used to extend the results of Park and Park, Browder and Ray to locally -strongly -accretive mappings by using Caristi-Kirk fixed point theorem. In the sequel, we introduce the notion...