Note on spectral theory of nonlinear operators: Extensions of some surjectivity theorems of Fučík and Nečas
In this paper we clarify that the interior proximal method developed in [6] (vol. 27 of this journal) for solving variational inequalities with monotone operators converges under essentially weaker conditions concerning the functions describing the "feasible" set as well as the operator of the variational inequality.
The Nielsen fixed point theory is used to show several results for certain operator equations involving weakly inward mappings.
The paper is devoted to the study of the properties of the Fučík spectrum. In the first part, we analyse the Fučík spectra of the problems with one second order ordinary differential equation with Dirichlet, Neumann and mixed boundary conditions and we present the explicit form of nontrivial solutions. Then, we discuss the problem with two second order differential equations with mixed boundary conditions. We show the relation between the Dirichlet boundary value problem and mixed boundary value...
In this paper, some ideas for the numerical realization of the hybrid proximal projection algorithm from Solodov and Svaiter [22] are presented. An example is given which shows that this hybrid algorithm does not generate a Fejér-monotone sequence. Further, a strategy is suggested for the computation of inexact solutions of the auxiliary problems with a certain tolerance. For that purpose, ε-subdifferentials of the auxiliary functions and the bundle trust region method from Schramm and Zowe [20]...
In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is in general and when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.
In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is 1/2 in general and 1 when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl's rheological model, our estimates in maximum norm do not depend on spatial dimension. ...
We study the boundary value problem in , on , where is a smooth bounded domain in . Our attention is focused on two cases when , where for any or for any . In the former case we show the existence of infinitely many weak solutions for any . In the latter we prove that if is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a -symmetric version for even functionals...
We provide new local and semilocal convergence results for Newton's method. We introduce Lipschitz-type hypotheses on the mth-Frechet derivative. This way we manage to enlarge the radius of convergence of Newton's method. Numerical examples are also provided to show that our results guarantee convergence where others do not.