Displaying 121 – 140 of 283

Showing per page

A quasistatic contact problem with unilateral constraint and slip-dependent friction

Arezki Touzaline (2015)

Applicationes Mathematicae

We consider a mathematical model of a quasistatic contact between an elastic body and an obstacle. The contact is modelled with unilateral constraint and normal compliance, associated to a version of Coulomb's law of dry friction where the coefficient of friction depends on the slip displacement. We present a weak formulation of the problem and establish an existence result. The proofs employ a time-discretization method, compactness and lower semicontinuity arguments.

A Random Evolution Inclusion of Subdifferential Type in Hilbert Spaces

Kravvaritis, D., Pantelidis, G. (1996)

Serdica Mathematical Journal

In this paper we study a nonlinear evolution inclusion of subdifferential type in Hilbert spaces. The perturbation term is Hausdorff continuous in the state variable and has closed but not necessarily convex values. Our result is a stochastic generalization of an existence theorem proved by Kravvaritis and Papageorgiou in [6].

A refined Newton’s mesh independence principle for a class of optimal shape design problems

Ioannis Argyros (2006)

Open Mathematics

Shape optimization is described by finding the geometry of a structure which is optimal in the sense of a minimized cost function with respect to certain constraints. A Newton’s mesh independence principle was very efficiently used to solve a certain class of optimal design problems in [6]. Here motivated by optimization considerations we show that under the same computational cost an even finer mesh independence principle can be given.

A remark on solving large systems of equations in function spaces

I. Bremer, Klaus R. Schneider (1990)

Aplikace matematiky

In order to save CPU-time in solving large systems of equations in function spaces we decompose the large system in subsystems and solve the subsystems by an appropriate method. We give a sufficient condition for the convergence of the corresponding procedure and apply the approach to differential algebraic systems.

A remark on the local Lipschitz continuity of vector hysteresis operators

Pavel Krejčí (2001)

Applications of Mathematics

It is known that the vector stop operator with a convex closed characteristic Z of class C 1 is locally Lipschitz continuous in the space of absolutely continuous functions if the unit outward normal mapping n is Lipschitz continuous on the boundary Z of Z . We prove that in the regular case, this condition is also necessary.

A result on segmenting Jungck–Mann iterates

Memudu Olaposi Olatinwo (2008)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper, following the concepts in [5, 7], we shall establish a convergence result in a uniformly convex Banach space using the Jungck–Mann iteration process introduced by Singh et al [13] and a certain general contractive condition. The authors of [13] established various stability results for a pair of nonself-mappings for both Jungck and Jungck–Mann iteration processes. Our result is a generalization and extension of that of [7] and its corollaries. It is also an improvement on the result...

A simple regularization method for the ill-posed evolution equation

Nguyen Huy Tuan, Dang Duc Trong (2011)

Czechoslovak Mathematical Journal

The nonhomogeneous backward Cauchy problem u t + A u ( t ) = f ( t ) , u ( T ) = ϕ , where A is a positive self-adjoint unbounded operator which has continuous spectrum and f is a given function being given is regularized by the well-posed problem. New error estimates of the regularized solution are obtained. This work extends earlier results by N. Boussetila and by M. Denche and S. Djezzar.

A SOR Acceleration of Self-Adjoint and m-Accretive Splitting Iterative Solver for 2-D Neutron Transport Equation

O. Awono, J. Tagoudjeu (2010)

Mathematical Modelling of Natural Phenomena

We present an iterative method based on an infinite dimensional adaptation of the successive overrelaxation (SOR) algorithm for solving the 2-D neutron transport equation. In a wide range of application, the neutron transport operator admits a Self-Adjoint and m-Accretive Splitting (SAS). This splitting leads to an ADI-like iterative method which converges unconditionally and is equivalent to a fixed point problem where the operator is a 2 by 2 matrix...

Currently displaying 121 – 140 of 283