A viscosity of Cesàro mean approximation methods for a mixed equilibrium, variational inequalities, and fixed point problems.
In this paper, we study the strong convergence of the proximal gradient algorithm with inertial extrapolation term for solving classical minimization problem and finding the fixed points of -demimetric mapping in a real Hilbert space. Our algorithm is inspired by the inertial proximal point algorithm and the viscosity approximation method of Moudafi. A strong convergence result is achieved in our result without necessarily imposing the summation condition on the inertial term. Finally, we provide...
The Newton-Mysovskikh theorem provides sufficient conditions for the semilocal convergence of Newton's method to a locally unique solution of an equation in a Banach space setting. It turns out that under weaker hypotheses and a more precise error analysis than before, weaker sufficient conditions can be obtained for the local as well as semilocal convergence of Newton's method. Error bounds on the distances involved as well as a larger radius of convergence are obtained. Some numerical examples...
The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both -Harmonic and -biharmonic operators is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces and .
We improve (in some sense) a recent theorem due to Banas and Knap (1989) about the existence of integrable solutions of a functional-integral equation.
We study in the space of continuous functions defined on [0,T] with values in a real Banach space E the periodic boundary value problem for abstract inclusions of the form ⎧ ⎨ ⎩ x (T) = x(0), where, is a multivalued map with convex compact values, ⊂ E, is the superposition operator generated by F, and S: × L¹([0,T];E) → C([0,T]; ) an abstract operator. As an application, some results are given to the periodic boundary value problem for nonlinear differential inclusions governed by m-accretive...
This is an expanded version, enriched by references, of my inaugural speech held on November 7, 2001 at the Real Academia de Ciencas Exactas, Físicas y Naturales in Madrid. It explains in a nontechnical way, accessible to a general scientific community, some of the motivation and basic ideas of my research of the last twenty years on a functional-analytical approach to nonlinear parabolic problems.
A Cauchy problem for an abstract nonlinear Volterra integrodifferential equation is considered. Existence and uniqueness results are shown for any given time interval under weak time regularity assumptions on the kernel. Some applications to the heat flow with memory are presented.
A class of quasi-variational inequalities (QVI) of elliptic type is studied in reflexive Banach spaces. The concept of QVI was earlier introduced by A. Bensoussan and J.-L. Lions [2] and its general theory has been developed by many mathematicians, for instance, see [6, 7, 9, 13] and a monograph [1]. In this paper we give a generalization of the existence theorem established in [14]. In our treatment we employ the compactness method along with a concept of convergence of nonlinear multivalued operators...
Recently, we established some generalizations of the theory of Lagrange multipliers arising from nonlinear programming in Banach spaces, which enable us to treat not only elliptic problems but also parabolic problems in the same generalized framework. The main objective of the present paper is to discuss a typical time-dependent double obstacle problem as a new application of the above mentioned generalization. Actually, we describe it as a usual parabolic variational inequality and then characterize...
2000 Mathematics Subject Classification: 47H04, 65K10.In this paper we investigate the existence of a sequence (xk ) satisfying 0 ∈ f (xk )+ ∇f (xk )(xk+1 − xk )+ 1/2 ∇2 f (xk )(xk+1 − xk )^2 + G(xk+1 ) and converging to a solution x∗ of the generalized equation 0 ∈ f (x) + G(x); where f is a function and G is a set-valued map acting in Banach spaces.
We discuss some numerical ranges for Lipschitz continuous nonlinear operators and their relations to spectral sets. In particular, we show that the spectrum defined by Kachurovskij (1969) for Lipschitz continuous operators is contained in the so-called polynomial hull of the numerical range introduced by Rhodius (1984).