Schur΄s Theorem for Operators
We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order , and those defined by the dual property, the sequentially Right Banach spaces of order for . These classes of Banach spaces are characterized by the notions of -limited sets in the corresponding dual space and subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space and a reflexive Banach space...
We initiate the study of sets of p-multiplicity in locally compact groups and their operator versions. We show that a closed subset E of a second countable locally compact group G is a set of p-multiplicity if and only if is a set of operator p-multiplicity. We exhibit examples of sets of p-multiplicity, establish preservation properties for unions and direct products, and prove a p-version of the Stone-von Neumann Theorem.
Motivated by a well-known result of Kadison that describes surjective isometries of the space of compact and the space of bounded operators on a Hilbert space, in this paper we investigate the structure of surjective isometries on the space of compact and on the space of bounded operators between Banach spaces. We give an example to show that isometries in general need not be of the canonical form. As an application of our study of the group of isometries, we consider the algebraic reflexivity of...