Random trilinear forms and the Schur multiplication of tensors.
Subspaces of Toeplitz operators on the Hardy spaces over a multiply connected region in the complex plane are investigated. A universal covering map of such a region and the group of automorphisms invariant with respect to the covering map connect the Hardy space on this multiply connected region with a certain subspace of the classical Hardy space on the disc. We also present some connections of Toeplitz operators on both spaces from the reflexivity point of view.