The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We give an explicit description of a tensor norm equivalent on to the associated tensor norm to the ideal of -absolutely summing operators. As a consequence, we describe a tensor norm on the class of Banach spaces which is equivalent to the left projective tensor norm associated to .
Let M and N be nonzero subspaces of a Hilbert space H satisfying M ∩ N = {0} and M ∨ N = H and let T ∈ ℬ(H). Consider the question: If T leaves each of M and N invariant, respectively, intertwines M and N, does T decompose as a sum of two operators with the same property and each of which, in addition, annihilates one of the subspaces? If the angle between M and N is positive the answer is affirmative. If the angle is zero, the answer is still affirmative for finite rank operators but there are...
Currently displaying 1 –
5 of
5