Displaying 701 – 720 of 780

Showing per page

Studies on BVPs for IFDEs involved with the Riemann-Liouville type fractional derivatives

Yuji Liu (2016)

Nonautonomous Dynamical Systems

In this article, we present a new method for converting the boundary value problems for impulsive fractional differential systems involved with the Riemann-Liouville type derivatives to integral systems, some existence results for solutions of a class of boundary value problems for nonlinear impulsive fractional differential systems at resonance case and non-resonance case are established respectively. Our analysis relies on the well known Schauder’s fixed point theorem and coincidence degree theory....

Study of a viscoelastic frictional contact problem with adhesion

Arezki Touzaline (2011)

Commentationes Mathematicae Universitatis Carolinae

We consider a quasistatic frictional contact problem between a viscoelastic body with long memory and a deformable foundation. The contact is modelled with normal compliance in such a way that the penetration is limited and restricted to unilateral constraint. The adhesion between contact surfaces is taken into account and the evolution of the bonding field is described by a first order differential equation. We derive a variational formulation and prove the existence and uniqueness result of the...

Study of Stability in Nonlinear Neutral Differential Equations with Variable Delay Using Krasnoselskii–Burton’s Fixed Point

Mouataz Billah MESMOULI, Abdelouaheb Ardjouni, Ahcene Djoudi (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper, we use a modification of Krasnoselskii’s fixed point theorem introduced by Burton (see [Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem. Nonlinear Stud., 9 (2002), 181–190.] Theorem 3) to obtain stability results of the zero solution of the totally nonlinear neutral differential equation with variable delay x ' t = - a t h x t + d d t Q t , x t - τ t + G t , x t , x t - τ t . The stability of the zero solution of this eqution provided that h 0 = Q t , 0 = G t , 0 , 0 = 0 . The Caratheodory condition is used for the functions Q and G .

System of fractional differential equations with Erdélyi-Kober fractional integral conditions

Natthaphong Thongsalee, Sorasak Laoprasittichok, Sotiris K. Ntouyas, Jessada Tariboon (2015)

Open Mathematics

In this paper we study existence and uniqueness of solutions for a system consisting from fractional differential equations of Riemann-Liouville type subject to nonlocal Erdélyi-Kober fractional integral conditions. The existence and uniqueness of solutions is established by Banach’s contraction principle, while the existence of solutions is derived by using Leray-Schauder’s alternative. Examples illustrating our results are also presented.

The algebraic structure of delay-differential systems: a behavioral perspective

Heide Glüsing-Lüerssen, Paolo Vettori, Sandro Zampieri (2001)

Kybernetika

This paper presents a survey on the recent contributions to linear time- invariant delay-differential systems in the behavioral approach. In this survey both systems with commensurate and with noncommensurate delays will be considered. The emphasis lies on the investigation of the relationship between various systems descriptions. While this can be understood in a completely algebraic setting for systems with commensurate delays, this is not the case for systems with noncommensurate delays. In the...

The distance between fixed points of some pairs of maps in Banach spaces and applications to differential systems

Cristinel Mortici (2006)

Czechoslovak Mathematical Journal

Let T be a γ -contraction on a Banach space Y and let S be an almost γ -contraction, i.e. sum of an ε , γ -contraction with a continuous, bounded function which is less than ε in norm. According to the contraction principle, there is a unique element u in Y for which u = T u . If moreover there exists v in Y with v = S v , then we will give estimates for u - v . Finally, we establish some inequalities related to the Cauchy problem.

Currently displaying 701 – 720 of 780