The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Lower semicontinuity of multiple μ -quasiconvex integrals

Ilaria Fragalà (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Lower semicontinuity results are obtained for multiple integrals of the kind n f ( x , μ u ) d μ , where μ is a given positive measure on n , and the vector-valued function u belongs to the Sobolev space H μ 1 , p ( n , m ) associated with μ . The proofs are essentially based on blow-up techniques, and a significant role is played therein by the concepts of tangent space and of tangent measures to μ . More precisely, for fully general μ , a notion of quasiconvexity for f along the tangent bundle to μ , turns out to be necessary for lower...

Lower semicontinuity of multiple µ-quasiconvex integrals

Ilaria Fragalà (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Lower semicontinuity results are obtained for multiple integrals of the kind n f ( x , μ u ) d μ , where μ is a given positive measure on n , and the vector-valued function u belongs to the Sobolev space H μ 1 , p ( n , m ) associated with μ. The proofs are essentially based on blow-up techniques, and a significant role is played therein by the concepts of tangent space and of tangent measures to μ. More precisely, for fully general μ, a notion of quasiconvexity for f along the tangent bundle to μ, turns out to be necessary for lower...

Currently displaying 1 – 4 of 4

Page 1