Displaying 161 – 180 of 397

Showing per page

Least regret control, virtual control and decomposition methods

Jacques-Louis Lions (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

"Least regret control" consists in trying to find a control which "optimizes the situation" with the constraint of not making things too worse with respect to a known reference control, in presence of more or less significant perturbations. This notion was introduced in [7]. It is recalled on a simple example (an elliptic system, with distributed control and boundary perturbation) in Section 2. We show that the problem reduces to a standard optimal control problem for augmented state equations. On...

Linear convergence in the approximation of rank-one convex envelopes

Sören Bartels (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A linearly convergent iterative algorithm that approximates the rank-1 convex envelope f r c of a given function f : n × m , i.e. the largest function below f which is convex along all rank-1 lines, is established. The proposed algorithm is a modified version of an approximation scheme due to Dolzmann and Walkington.

Linear convergence in the approximation of rank-one convex envelopes

Sören Bartels (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A linearly convergent iterative algorithm that approximates the rank-1 convex envelope  f r c of a given function f : n × m , i.e. the largest function below f which is convex along all rank-1 lines, is established. The proposed algorithm is a modified version of an approximation scheme due to Dolzmann and Walkington.

Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions

Sergio Guerrero (2006)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we deal with the local exact controllability of the Navier-Stokes system with nonlinear Navier-slip boundary conditions and distributed controls supported in small sets. In a first step, we prove a Carleman inequality for the linearized Navier-Stokes system, which leads to null controllability of this system at any time T>0. Then, fixed point arguments lead to the deduction of a local result concerning the exact controllability to the trajectories of the Navier-Stokes system.

Local minimizers of functionals with multiple volume constraints

Édouard Oudet, Marc Oliver Rieger (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We study variational problems with volume constraints, i.e., with level sets of prescribed measure. We introduce a numerical method to approximate local minimizers and illustrate it with some two-dimensional examples. We demonstrate numerically nonexistence results which had been obtained analytically in previous work. Moreover, we show the existence of discontinuous dependence of global minimizers from the data by using a Γ-limit argument and illustrate this with numerical computations. Finally...

Mean-Field Optimal Control

Massimo Fornasier, Francesco Solombrino (2014)

ESAIM: Control, Optimisation and Calculus of Variations

We introduce the concept of mean-field optimal control which is the rigorous limit process connecting finite dimensional optimal control problems with ODE constraints modeling multi-agent interactions to an infinite dimensional optimal control problem with a constraint given by a PDE of Vlasov-type, governing the dynamics of the probability distribution of interacting agents. While in the classical mean-field theory one studies the behavior of a large number of small individuals freely interacting...

Minimal invasion: An optimal L∞ state constraint problem

Christian Clason, Kazufumi Ito, Karl Kunisch (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work, the least pointwise upper and/or lower bounds on the state variable on a specified subdomain of a control system under piecewise constant control action are sought. This results in a non-smooth optimization problem in function spaces. Introducing a Moreau-Yosida regularization of the state constraints, the problem can be solved using a superlinearly convergent semi-smooth Newton method. Optimality conditions are derived, convergence of the Moreau-Yosida regularization is proved, and...

Minimal invasion: An optimal L∞ state constraint problem

Christian Clason, Kazufumi Ito, Karl Kunisch (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, the least pointwise upper and/or lower bounds on the state variable on a specified subdomain of a control system under piecewise constant control action are sought. This results in a non-smooth optimization problem in function spaces. Introducing a Moreau-Yosida regularization of the state constraints, the problem can be solved using a superlinearly convergent semi-smooth Newton method. Optimality conditions are derived, convergence of the Moreau-Yosida regularization is proved, and...

Minimax control of nonlinear evolution equations

Nikolaos S. Papageorgiou (1995)

Commentationes Mathematicae Universitatis Carolinae

In this paper we study the minimax control of systems governed by a nonlinear evolution inclusion of the subdifferential type. Using some continuity and lower semicontinuity results for the solution map and the cost functional respectively, we are able to establish the existence of an optimal control. The abstract results are then applied to obstacle problems, semilinear systems with weakly varying coefficients (e.gȯscillating coefficients) and differential variational inequalities.

Nash equilibrium for a multiobjective control problem related to wastewater management

Néstor García-Chan, Rafael Muñoz-Sola, Miguel Ernesto Vázquez-Méndez (2009)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with mathematical modelling in the management of a wastewater treatment system. The problem is formulated as looking for a Nash equilibrium of a multiobjective pointwise control problem of a parabolic equation. Existence of solution is proved and a first order optimality system is obtained. Moreover, a numerical method to solve this system is detailed and numerical results are shown in a realistic situation posed in the estuary of Vigo (Spain).


Currently displaying 161 – 180 of 397