On the p-drop theorem, 1 ≤ p ≤∞.
We characterize sets of non-differentiability points of convex functions on . This completes (in ) the result by Zajíček [2] which gives a characterization of the magnitude of these sets.
We introduce the notion of uniform Fréchet differentiability of mappings between Banach spaces, and we give some sufficient conditions for this property to hold.
We present some consequences of a deep result of J. Lindenstrauss and D. Preiss on -almost everywhere Fréchet differentiability of Lipschitz functions on (and similar Banach spaces). For example, in these spaces, every continuous real function is Fréchet differentiable at -almost every at which it is Gâteaux differentiable. Another interesting consequences say that both cone-monotone functions and continuous quasiconvex functions on these spaces are -almost everywhere Fréchet differentiable....
The paper contains calculus rules for coderivatives of compositions, sums and intersections of set-valued mappings. The types of coderivatives considered correspond to Dini-Hadamard and limiting Dini-Hadamard subdifferentials in Gˆateaux differentiable spaces, Fréchet and limiting Fréchet subdifferentials in Asplund spaces and approximate subdifferentials in arbitrary Banach spaces. The key element of the unified approach to obtaining various calculus rules for various types of derivatives presented...