Displaying 41 – 60 of 69

Showing per page

On the points of non-differentiability of convex functions

David Pavlica (2004)

Commentationes Mathematicae Universitatis Carolinae

We characterize sets of non-differentiability points of convex functions on n . This completes (in n ) the result by Zajíček [2] which gives a characterization of the magnitude of these sets.

On Uniform Differentiability

S. Rolewicz (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

We introduce the notion of uniform Fréchet differentiability of mappings between Banach spaces, and we give some sufficient conditions for this property to hold.

Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions

Luděk Zajíček (2014)

Commentationes Mathematicae Universitatis Carolinae

We present some consequences of a deep result of J. Lindenstrauss and D. Preiss on Γ -almost everywhere Fréchet differentiability of Lipschitz functions on c 0 (and similar Banach spaces). For example, in these spaces, every continuous real function is Fréchet differentiable at Γ -almost every x at which it is Gâteaux differentiable. Another interesting consequences say that both cone-monotone functions and continuous quasiconvex functions on these spaces are Γ -almost everywhere Fréchet differentiable....

Subdifferentials of Performance Functions and Calculus of Coderivatives of Set-Valued Mappings

Ioffe, Alexander, Penot, Jean-Paul (1996)

Serdica Mathematical Journal

The paper contains calculus rules for coderivatives of compositions, sums and intersections of set-valued mappings. The types of coderivatives considered correspond to Dini-Hadamard and limiting Dini-Hadamard subdifferentials in Gˆateaux differentiable spaces, Fréchet and limiting Fréchet subdifferentials in Asplund spaces and approximate subdifferentials in arbitrary Banach spaces. The key element of the unified approach to obtaining various calculus rules for various types of derivatives presented...

Currently displaying 41 – 60 of 69