The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The aim of this paper is to give the proofs of those results that in [4] were only announced, and, at the same time, to propose some possible developments, indicating some of the most significant open problems.
Let be a closed subset of and let denote the metric projection (closest point mapping) of onto in -norm. A classical result of Asplund states that is (Fréchet) differentiable almost everywhere (a.e.) in in the Euclidean case . We consider the case and prove that the th component of is differentiable a.e. if and satisfies Hölder condition of order if .
It is proved that no convex and Fréchet differentiable function on c0(w1), whose derivative is locally uniformly continuous, attains its minimum at a unique point.
Equivalent conditions for the separability of the range of the subdifferential of a given convex Lipschitz function defined on a separable Banach space are studied. The conditions are in terms of a majorization of by a -smooth function, separability of the boundary for or an approximation of by Fréchet smooth convex functions.
We find conditions for a smooth nonlinear map f: U → V between open subsets of Hilbert or Banach spaces to be locally convex in the sense that for some c and each positive ɛ < c the image f(B ɛ(x)) of each ɛ-ball B ɛ(x) ⊂ U is convex. We give a lower bound on c via the second order Lipschitz constant Lip2(f), the Lipschitz-open constant Lipo(f) of f, and the 2-convexity number conv2(X) of the Banach space X.
We observe that each set from the system (or even ) is -null; consequently, the version of Rademacher’s theorem (on Gâteaux differentiability of Lipschitz functions on separable Banach spaces) proved by D. Preiss and the author is stronger than that proved by D. Preiss and J. Lindenstrauss. Further, we show that the set of non-differentiability points of a convex function on is -strongly lower porous. A discussion concerning sets of Fréchet non-differentiability points of continuous convex...
New contributions concerning the minimal displacement of points under mappings (defect of fixed point) are obtained.
We consider an optimal control problem for a class of non-linear elliptic equations. A result of existence and uniqueness of the state equation is proven under weaker hypotheses than in the literature. We also prove the existence of an optimal control. Applications to some lubrication problems and numerical results are given.
We consider an optimal control problem for a class of non-linear
elliptic equations. A result of existence and uniqueness
of the state equation is proven under weaker hypotheses than in the
literature. We also prove the existence of an optimal
control. Applications to some lubrication problems and numerical
results are given.
We characterize sets of non-differentiability points of convex functions on . This completes (in ) the result by Zajíček [2] which gives a characterization of the magnitude of these sets.
We introduce the notion of uniform Fréchet differentiability of mappings between Banach spaces, and we give some sufficient conditions for this property to hold.
Currently displaying 1 –
14 of
14