On a solution of an optimization problem in linear control systems with quadratic performance index
We characterize the existence of the solutions of the truncated moments problem in several real variables on unbounded supports by the existence of the maximum of certain concave Lagrangian functions. A natural regularity assumption on the support is required.
We study a variational problem which was introduced by Hannon, Marcus and Mizel [ESAIM: COCV9 (2003) 145–149] to describe step-terraces on surfaces of so-called “unorthodox” crystals. We show that there is no nondegenerate intervals on which the absolute value of a minimizer is identically.
We give a version of the Moser-Trudinger inequality without boundary condition for Orlicz-Sobolev spaces embedded into exponential and multiple exponential spaces. We also derive the Concentration-Compactness Alternative for this inequality. As an application of our Concentration-Compactness Alternative we prove that a functional with the sub-critical growth attains its maximum.
Let f: ℝⁿ → ℝ be a nonconstant polynomial function. Using the information from the "curve of tangency" of f, we provide a method to determine the Łojasiewicz exponent at infinity of f. As a corollary, we give a computational criterion to decide if the Łojasiewicz exponent at infinity is finite or not. Then we obtain a formula to calculate the set of points at which the polynomial f is not proper. Moreover, a relation between the Łojasiewicz exponent at infinity of f and the problem of computing...
We deal with an optimal control problem for variational inequalities, where the monotone operators as well as the convex sets of possible states depend on the control parameter. The existence theorem for the optimal control will be applied to the optimal design problems for an elasto-plastic beam and an elastic plate, where a variable thickness appears as a control variable.
The aim of the present paper is to study problems of optimal design in mechanics, whose variational form are inequalities expressing the principle of virtual power in its inequality form. We consider an optimal control problem in whixh the state of the system (involving an elliptic, linear symmetric operator, the coefficients of which are chosen as the design - control variables) is defined as the (unique) solution of stationary variational inequalities. The existence result proved in Section 1...