Page 1 Next

Displaying 1 – 20 of 92

Showing per page

Random perturbation of the variable metric method for unconstrained nonsmooth nonconvex optimization

Abdelkrim El Mouatasim, Rachid Ellaia, José Souza de Cursi (2006)

International Journal of Applied Mathematics and Computer Science

We consider the global optimization of a nonsmooth (nondifferentiable) nonconvex real function. We introduce a variable metric descent method adapted to nonsmooth situations, which is modified by the incorporation of suitable random perturbations. Convergence to a global minimum is established and a simple method for the generation of suitable perturbations is introduced. An algorithm is proposed and numerical results are presented, showing that the method is computationally effective and stable....

Rank 1 convex hulls of isotropic functions in dimension 2 by 2

Miroslav Šilhavý (2001)

Mathematica Bohemica

Let f be a rotationally invariant (with respect to the proper orthogonal group) function defined on the set M 2 × 2 of all 2 by 2 matrices. Based on conditions for the rank 1 convexity of f in terms of signed invariants of 𝔸 (to be defined below), an iterative procedure is given for calculating the rank 1 convex hull of a rotationally invariant function. A special case in which the procedure terminates after the second step is determined and examples of the actual calculations are given.

Rate independent Kurzweil processes

Pavel Krejčí, Matthias Liero (2009)

Applications of Mathematics

The Kurzweil integral technique is applied to a class of rate independent processes with convex energy and discontinuous inputs. We prove existence, uniqueness, and continuous data dependence of solutions in B V spaces. It is shown that in the context of elastoplasticity, the Kurzweil solutions coincide with natural limits of viscous regularizations when the viscosity coefficient tends to zero. The discontinuities produce an additional positive dissipation term, which is not homogeneous of degree...

Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems

Eduardo Casas, Fredi Tröltzsch (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Optimal control problems for semilinear elliptic equations with control constraints and pointwise state constraints are studied. Several theoretical results are derived, which are necessary to carry out a numerical analysis for this class of control problems. In particular, sufficient second-order optimality conditions, some new regularity results on optimal controls and a sufficient condition for the uniqueness of the Lagrange multiplier associated with the state constraints are presented.

Reduction by group symmetry of second order variational problems on a semidirect product of Lie groups with positive definite riemannian metric

Claudio Altafini (2004)

ESAIM: Control, Optimisation and Calculus of Variations

For a riemannian structure on a semidirect product of Lie groups, the variational problems can be reduced using the group symmetry. Choosing the Levi-Civita connection of a positive definite metric tensor, instead of any of the canonical connections for the Lie group, simplifies the reduction of the variations but complicates the expression for the Lie algebra valued covariant derivatives. The origin of the discrepancy is in the semidirect product structure, which implies that the riemannian exponential...

Reduction by group symmetry of second order variational problems on a semidirect product of Lie groups with positive definite Riemannian metric

Claudio Altafini (2010)

ESAIM: Control, Optimisation and Calculus of Variations

For a Riemannian structure on a semidirect product of Lie groups, the variational problems can be reduced using the group symmetry. Choosing the Levi-Civita connection of a positive definite metric tensor, instead of any of the canonical connections for the Lie group, simplifies the reduction of the variations but complicates the expression for the Lie algebra valued covariant derivatives. The origin of the discrepancy is in the semidirect product structure, which implies that the Riemannian exponential...

Régularité Lipschitzienne des Géodésiques Minimisantes pour Quelques Distributions Affines

Bensalem, Naceurdine (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 49J15, 49J30, 53B50.In the context of sub-Riemannian geometry and the Lipschitzian regularity of minimizers in control theory, we investigate some properties of minimizing geodesics for certain affine distributions. In particular, we consider the case of a generalized H2-strong affine distribution and the case of an affine Plaff system of maximal class.

Regularity and optimal control of quasicoupled and coupled heating processes

Jiří Jarušek (1996)

Applications of Mathematics

Sufficient conditions for the stresses in the threedimensional linearized coupled thermoelastic system including viscoelasticity to be continuous and bounded are derived and optimization of heating processes described by quasicoupled or partially linearized coupled thermoelastic systems with constraints on stresses is treated. Due to the consideration of heating regimes being “as nonregular as possible” and because of the well-known lack of results concerning the classical regularity of solutions...

Currently displaying 1 – 20 of 92

Page 1 Next