Page 1 Next

Displaying 1 – 20 of 232

Showing per page

Saddle point criteria for second order η -approximated vector optimization problems

Anurag Jayswal, Shalini Jha, Sarita Choudhury (2016)

Kybernetika

The purpose of this paper is to apply second order η -approximation method introduced to optimization theory by Antczak [2] to obtain a new second order η -saddle point criteria for vector optimization problems involving second order invex functions. Therefore, a second order η -saddle point and the second order η -Lagrange function are defined for the second order η -approximated vector optimization problem constructed in this approach. Then, the equivalence between an (weak) efficient solution of the...

Scaling laws for non-euclidean plates and the W 2 , 2 isometric immersions of riemannian metrics

Marta Lewicka, Mohammad Reza Pakzad (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Recall that a smooth Riemannian metric on a simply connected domain can be realized as the pull-back metric of an orientation preserving deformation if and only if the associated Riemann curvature tensor vanishes identically. When this condition fails, one seeks a deformation yielding the closest metric realization. We set up a variational formulation of this problem by introducing the non-Euclidean version of the nonlinear elasticity functional, and establish its Γ-convergence under the proper...

Scaling laws for non-Euclidean plates and the W2,2 isometric immersions of Riemannian metrics

Marta Lewicka, Mohammad Reza Pakzad (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Recall that a smooth Riemannian metric on a simply connected domain can be realized as the pull-back metric of an orientation preserving deformation if and only if the associated Riemann curvature tensor vanishes identically. When this condition fails, one seeks a deformation yielding the closest metric realization. We set up a variational formulation of this problem by introducing the non-Euclidean version of the nonlinear elasticity functional, and establish its Γ-convergence under the proper scaling....

Second-order optimality conditions for nondominated solutions of multiobjective programming with C 1 , 1 data

Liping Liu, Pekka Neittaanmäki, Michal Křížek (2000)

Applications of Mathematics

We examine new second-order necessary conditions and sufficient conditions which characterize nondominated solutions of a generalized constrained multiobjective programming problem. The vector-valued criterion function as well as constraint functions are supposed to be from the class C 1 , 1 . Second-order optimality conditions for local Pareto solutions are derived as a special case.

Second-order sufficient condition for ˜ -stable functions

Dušan Bednařík, Karel Pastor (2007)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The aim of our article is to present a proof of the existence of local minimizer in the classical optimality problem without constraints under weaker assumptions in comparisons with common statements of the result. In addition we will provide rather elementary and self-contained proof of that result.

Selection theorem in L¹

Andrzej Nowak, Celina Rom (2006)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Let F be a multifunction from a metric space X into L¹, and B a subset of X. We give sufficient conditions for the existence of a measurable selector of F which is continuous at every point of B. Among other assumptions, we require the decomposability of F(x) for x ∈ B.

Currently displaying 1 – 20 of 232

Page 1 Next