Symbolic computation of variational symmetries in optimal control
We consider the functional where is a bounded domain and is a convex function. Under general assumptions on , Crasta [Cr1] has shown that if admits a minimizer in depending only on the distance from the boundary of , then must be a ball. With some restrictions on , we prove that spherical symmetry can be obtained only by assuming that the minimizer has one level surface parallel to the boundary (i.e. it has only a level surface in common with the distance). We then discuss how these...
The powerful Hamilton-Jacobi theory is used for constructing regularizations and error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method for optimal design and reconstruction: the first, analytical, step is to regularize the hamiltonian; next the solution to its stationary hamiltonian system, a nonlinear partial differential equation, is computed with the Newton method. The method is efficient for designs where the hamiltonian function can be...
The powerful Hamilton-Jacobi theory is used for constructing regularizations and error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method for optimal design and reconstruction: the first, analytical, step is to regularize the Hamiltonian; next the solution to its stationary Hamiltonian system, a nonlinear partial differential equation, is computed with the Newton method. The method is efficient for designs where the Hamiltonian function...
Si studia il problema della sintesi per un problema di controllo stocastico con equazione di stato lineare e funzione costo convessa.
We discuss the existence and properties of solutions for systems of singular second-order ODEs in both sublinear and superlinear cases. Our approach is based on the variational method enriched by some topological ideas. We also investigate the continuous dependence of solutions on functional parameters.