Previous Page 12

Displaying 221 – 232 of 232

Showing per page

Symmetry of minimizers with a level surface parallel to the boundary

Giulio Ciraolo, Rolando Magnanini, Shigeru Sakaguchi (2015)

Journal of the European Mathematical Society

We consider the functional Ω ( v ) = Ω [ f ( | D v | ) - v ] d x , where Ω is a bounded domain and f is a convex function. Under general assumptions on f , Crasta [Cr1] has shown that if Ω admits a minimizer in W 0 1 , 1 ( Ω ) depending only on the distance from the boundary of Ω , then Ω must be a ball. With some restrictions on f , we prove that spherical symmetry can be obtained only by assuming that the minimizer has one level surface parallel to the boundary (i.e. it has only a level surface in common with the distance). We then discuss how these...

Symplectic Pontryagin approximations for optimal design

Jesper Carlsson, Mattias Sandberg, Anders Szepessy (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The powerful Hamilton-Jacobi theory is used for constructing regularizations and error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method for optimal design and reconstruction: the first, analytical, step is to regularize the hamiltonian; next the solution to its stationary hamiltonian system, a nonlinear partial differential equation, is computed with the Newton method. The method is efficient for designs where the hamiltonian function can be...

Symplectic Pontryagin approximations for optimal design

Jesper Carlsson, Mattias Sandberg, Anders Szepessy (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

The powerful Hamilton-Jacobi theory is used for constructing regularizations and error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method for optimal design and reconstruction: the first, analytical, step is to regularize the Hamiltonian; next the solution to its stationary Hamiltonian system, a nonlinear partial differential equation, is computed with the Newton method. The method is efficient for designs where the Hamiltonian function...

Systems of singular BVPs - existence of solutions and their properties

Aleksandra Orpel (2014)

Banach Center Publications

We discuss the existence and properties of solutions for systems of singular second-order ODEs in both sublinear and superlinear cases. Our approach is based on the variational method enriched by some topological ideas. We also investigate the continuous dependence of solutions on functional parameters.

Currently displaying 221 – 232 of 232

Previous Page 12