On total differential inclusions
We introduce the notion of uniform Fréchet differentiability of mappings between Banach spaces, and we give some sufficient conditions for this property to hold.
Para el estudio de la naturaleza de formas críticas en optimización de formas se requieren algunas propiedades de continuidad sobre las derivadas de segundo orden de las formas. Dado que la fórmula de Taylor-Young involucra a diferentes topologías que no son equivalentes, dicha fórmula no permite deducir cuando una forma crítica es un mínimo local estricto de la función forma pese a que su Hessiano sea definido positivo en ese punto. El resultado principal de este trabajo ofrece una cota superior...
We prove a regularity result for weak minima of integral functionals of the form where F(x,ξ) is a Carathéodory function which grows as with some p > 1.
We present a characterization of weak sharp local minimizers of order one for a function f: ℝⁿ → ℝ defined by , where the functions are strictly differentiable. It is given in terms of the gradients of and the Mordukhovich normal cone to a given set on which f is constant. Then we apply this result to a smooth nonlinear programming problem with constraints.
We extend the open mapping theorem and inversion theorem of Robinson for convex multivalued mappings to γ-paraconvex multivalued mappings. Some questions posed by Rolewicz are also investigated. Our results are applied to obtain a generalization of the Farkas lemma for γ-paraconvex multivalued mappings.