Displaying 21 – 40 of 389

Showing per page

On a regularization method for variational inequalities with P_0 mappings

Igor Konnov, Elena Mazurkevich, Mohamed Ali (2005)

International Journal of Applied Mathematics and Computer Science

We consider partial Browder-Tikhonov regularization techniques for variational inequality problems with P_0 cost mappings and box-constrained feasible sets. We present classes of economic equilibrium problems which satisfy such assumptions and propose a regularization method for these problems.

On a semilinear variational problem

Bernd Schmidt (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We provide a detailed analysis of the minimizers of the functional u n | u | 2 + D n | u | γ , γ ( 0 , 2 ) , subject to the constraint u L 2 = 1 . This problem,e.g., describes the long-time behavior of the parabolic Anderson in probability theory or ground state solutions of a nonlinear Schrödinger equation. While existence can be proved with standard methods, we show that the usual uniqueness results obtained with PDE-methods can be considerably simplified by additional variational arguments. In addition, we investigate qualitative properties...

On a semilinear variational problem

Bernd Schmidt (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We provide a detailed analysis of the minimizers of the functional u n | u | 2 + D n | u | γ , γ ( 0 , 2 ) , subject to the constraint u L 2 = 1 . This problem, e.g., describes the long-time behavior of the parabolic Anderson in probability theory or ground state solutions of a nonlinear Schrödinger equation. While existence can be proved with standard methods, we show that the usual uniqueness results obtained with PDE-methods can be considerably simplified by additional variational arguments. In addition, we investigate qualitative properties...

On a shape control problem for the stationary Navier-Stokes equations

Max D. Gunzburger, Hongchul Kim, Sandro Manservisi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

An optimal shape control problem for the stationary Navier-Stokes system is considered. An incompressible, viscous flow in a two-dimensional channel is studied to determine the shape of part of the boundary that minimizes the viscous drag. The adjoint method and the Lagrangian multiplier method are used to derive the optimality system for the shape gradient of the design functional.

On a Theorem of Ingham.

S. Jaffard, M. Tucsnak, E. Zuazua (1997)

The journal of Fourier analysis and applications [[Elektronische Ressource]]

On a type of Signorini problem without friction in linear thermoelasticity

Jiří Nedoma (1983)

Aplikace matematiky

In the paper the Signorini problem without friction in the linear thermoelasticity for the steady-state case is investigated. The problem discussed is the model geodynamical problem, physical analysis of which is based on the plate tectonic hypothesis and the theory of thermoelasticity. The existence and unicity of the solution of the Signorini problem without friction for the steady-state case in the linear thermoelasticity as well as its finite element approximation is proved. It is known that...

On a variant of Korn’s inequality arising in statistical mechanics

L. Desvillettes, Cédric Villani (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We state and prove a Korn-like inequality for a vector field in a bounded open set of N , satisfying a tangency boundary condition. This inequality, which is crucial in our study of the trend towards equilibrium for dilute gases, holds true if and only if the domain is not axisymmetric. We give quantitative, explicit estimates on how the departure from axisymmetry affects the constants; a Monge–Kantorovich minimization problem naturally arises in this process. Variants in the axisymmetric case are...

Currently displaying 21 – 40 of 389