On the existence and convergence of approximate solutions for equilibrium problems in Banach spaces.
We consider nonlinear systems with a priori feedback. We establish the existence of admissible pairs and then we show that the Lagrange optimal control problem admits an optimal pair. As application we work out in detail two examples of optimal control problems for nonlinear parabolic partial differential equations.
In questa Nota si continua la discussione iniziata in [4] dell'esistenza di soluzioni ottimali per problemi di ottimo controllo in . Si definiscono problemi generalizzati, e si ottengono estensioni di risultati già presentati in [4]. Si dimostrano anche varie relazioni tra le soluzioni ottimali dei problemi generalizzati e i problemi originali e non convessi di ottimo controllo. Alla fine si considerano problemi lineari nelle variabili di stato anche nel caso di costi funzionali a valori vettoriali...
We have given several proofs on the existence of the price equilibrium --- via variational inequality --- via degree theory and via Brouwer's theorems.
We prove the existence of viable solutions to the Cauchy problem x” ∈ F(x,x’), x(0) = x₀, x’(0) = y₀, where F is a set-valued map defined on a locally compact set , contained in the Fréchet subdifferential of a ϕ-convex function of order two.
We prove the existence of solutions to systems of degenerate variational inequalities.
We study the integral representation of relaxed functionals in the multi-dimensional calculus of variations, for integrands which are finite in a convex bounded set with nonempty interior and infinite elsewhere.
We consider periodic minimizers of the Lawrence–Doniach functional, which models highly anisotropic superconductors with layered structure, in the simultaneous limit as the layer thickness tends to zero and the Ginzburg–Landau parameter tends to infinity. In particular, we consider the properties of minimizers when the system is subjected to an external magnetic field applied either tangentially or normally to the superconducting planes. For normally applied fields, our results show that the resulting...
Si dimostra che il funzionale è semicontinuo inferiormente su , rispetto alla topologia indotta da , qualora l’integrando sia una funzione non-negativa, misurabile in , convessa in , limitata nell’intorno dei punti del tipo , e tale che la funzione sia semicontinua inferiormente su .