On the structure of quasiconvex hulls
A way of geometrically representing symmetric 2 × 2-gradients is proposed, and a general theorem characterizing sets of gradients is proved. We believe this perspective may help in understanding the structure of gradients and visualizing it. Several non-trivial examples are discussed.
By drawing inspiration from the treatment of the non parametric area problem, an abstract functional is considered, defined for every open set in a given class of open subsets of and every function in , and verifying suitable assumptions of measure theoretic type, of invariance, convexity, and lower semicontinuity. The problem is discussed of the possibility of extending it, and of the uniqueness of such extension, to a functional verifying analogous properties, but defined in wider families...
Si considerano problemi di controllo ottimale con una dipendenza non lineare tra il controllo e lo stato. Si mostra come in certi casi la continuità di tale dipendenza, quindi la buona posizione nel senso di Tychonov, è connessa alla forma del funzionale costo. In particolare si esamina un problema di Stefan a due fasi con controllo distribuito nel termine di sorgente.
We introduce the notion of uniform Fréchet differentiability of mappings between Banach spaces, and we give some sufficient conditions for this property to hold.
Para el estudio de la naturaleza de formas críticas en optimización de formas se requieren algunas propiedades de continuidad sobre las derivadas de segundo orden de las formas. Dado que la fórmula de Taylor-Young involucra a diferentes topologías que no son equivalentes, dicha fórmula no permite deducir cuando una forma crítica es un mínimo local estricto de la función forma pese a que su Hessiano sea definido positivo en ese punto. El resultado principal de este trabajo ofrece una cota superior...
We prove a regularity result for weak minima of integral functionals of the form where F(x,ξ) is a Carathéodory function which grows as with some p > 1.
We present a characterization of weak sharp local minimizers of order one for a function f: ℝⁿ → ℝ defined by , where the functions are strictly differentiable. It is given in terms of the gradients of and the Mordukhovich normal cone to a given set on which f is constant. Then we apply this result to a smooth nonlinear programming problem with constraints.