Displaying 241 – 260 of 928

Showing per page

First variation of the general curvature-dependent surface energy

Günay Doğan, Ricardo H. Nochetto (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider general surface energies, which are weighted integrals over a closed surface with a weight function depending on the position, the unit normal and the mean curvature of the surface. Energies of this form have applications in many areas, such as materials science, biology and image processing. Often one is interested in finding a surface that minimizes such an energy, which entails finding its first variation with respect to perturbations of the surface. We present a concise derivation...

First variation of the general curvature-dependent surface energy

Günay Doğan, Ricardo H. Nochetto (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider general surface energies, which are weighted integrals over a closed surface with a weight function depending on the position, the unit normal and the mean curvature of the surface. Energies of this form have applications in many areas, such as materials science, biology and image processing. Often one is interested in finding a surface that minimizes such an energy, which entails finding its first variation with respect to perturbations of the surface. We present a concise derivation...

Fractional Roesser problem and its optimization

Rafał Kamocki (2014)

Banach Center Publications

In the paper, a fractional continuous Roesser model is considered. Existence and uniqueness of a solution and continuous dependence of solutions on controls of the nonlinear model are investigated. Next, a theorem on the existence of an optimal solution for linear model with variable coefficients is proved.

General method of regularization. I: Functionals defined on BD space

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. In part II, we will show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we will prove the existence theorem for the limit analysis problem.

General method of regularization. II: Relaxation proposed by suquet

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. We show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we prove an existence theorem for the limit analysis problem.

General method of regularization. III: The unilateral contact problem

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material with the Signorini constraints on the boundary) is the weak* lower semicontinuous regularization of the plastic energy. We consider an elastic-plastic solid endowed with the von Mises (or Tresca) yield condition. Moreover, we show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. We deduce that...

Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities

Imre Csiszár, František Matúš (2012)

Kybernetika

Integral functionals based on convex normal integrands are minimized subject to finitely many moment constraints. The integrands are finite on the positive and infinite on the negative numbers, strictly convex but not necessarily differentiable. The minimization is viewed as a primal problem and studied together with a dual one in the framework of convex duality. The effective domain of the value function is described by a conic core, a modification of the earlier concept of convex core. Minimizers...

Currently displaying 241 – 260 of 928