The search session has expired. Please query the service again.
Displaying 21 –
40 of
104
We analyse the sensitivity of the solution of a nonlinear obstacle plate
problem, with respect to small perturbations of the middle plane
of the plate. This analysis, which generalizes the results of [9,10]
for the linear case,
is done by application of an abstract variational
result [6], where the sensitivity of parameterized variational
inequalities in Banach spaces, without uniqueness of solution,
is quantified in terms of a generalized
derivative, that is the proto-derivative. We prove that...
We provide a sensitivity result for the solutions to the following finite-dimensional quasi-variational inequality when both the operator and the convex are perturbed. In particular, we prove the Hölder continuity of the solution sets of the problems perturbed around the original problem. All the results may be extended to infinite-dimensional (QVI).
The framework for shape and topology sensitivity analysis in geometrical domains with cracks is established for elastic bodies in two spatial dimensions. The equilibrium problem for the elastic body with cracks is considered. Inequality type boundary conditions are prescribed at the crack faces providing a non-penetration between the crack faces. Modelling of such problems in two spatial dimensions is presented with all necessary details for further applications in shape optimization in structural...
The goal of this paper is to compute the shape Hessian for a generalized Oseen problem with nonhomogeneous Dirichlet boundary condition by the velocity method. The incompressibility will be treated by penalty approach. The structure of the shape gradient and shape Hessian with respect to the shape of the variable domain for a given cost functional are established by an application of the Lagrangian method with function space embedding technique.
The paper deals with shape optimization of dynamic contact problem with Coulomb friction for viscoelastic bodies. The mass nonpenetrability condition is formulated in velocities. The friction coefficient is assumed to be bounded. Using material derivative method as well as the results concerning the regularity of solution to dynamic variational inequality the directional derivative of the cost functional is calculated and the necessary optimality condition is formulated.
Optimal shape design problem for a deformable body in contact with a rigid foundation is studied. The body is made from material obeying a nonlinear Hooke’s law. We study the existence of an optimal shape as well as its approximation with the finite element method. Practical realization with nonlinear programming is discussed. A numerical example is included.
A current procedure that takes into account the Dirichlet boundary condition with non-smooth data is to change it into a Robin type condition by introducing a penalization term; a major effect of this procedure is an easy implementation of the boundary condition. In this work, we deal with an optimal control problem where the control variable is the Dirichlet data. We describe the Robin penalization, and we bound the gap between the penalized and the non-penalized boundary controls for the small...
A current procedure that takes into account the Dirichlet boundary condition
with non-smooth data is to change it into a
Robin type condition by introducing a penalization term; a major effect of this
procedure is an easy implementation of the boundary condition.
In this work, we deal with an optimal control problem where
the control variable is the Dirichlet data.
We describe the Robin penalization,
and we bound the gap between the penalized and the non-penalized boundary controls
for the small...
Currently displaying 21 –
40 of
104