The search session has expired. Please query the service again.
We consider the finite element approximation of the identification problem, where one wishes to identify a curve along which a given solution of the boundary value problem possesses some specific property. We prove the convergence of FE-approximation and give some results of numerical tests.
As is known, color images are represented as multiple, channels, i.e. integer-valued functions on a discrete rectangle, corresponding to pixels on the screen. Thus, image compression, can be reduced to investigating suitable properties of such, functions. Each channel is compressed independently. We are, representing each such function by means of multi-dimensional, Haar and diamond bases so that the functions can be remembered, by their basis coefficients without loss of information. For, each...
The Mumford-Shah functional for image segmentation is an original approach
of the image segmentation problem, based on a minimal energy criterion. Its
minimization can be seen as a free discontinuity problem and is based on
Γ-convergence and bounded variation functions theories. Some new
regularization results, make possible to imagine a finite element resolution
method. In a first time, the Mumford-Shah functional is
introduced and some existing results are quoted. Then, a
discrete formulation...
We present a local convergence analysis of inexact Newton-like methods for solving nonlinear equations. Using more precise majorant conditions than in earlier studies, we provide: a larger radius of convergence; tighter error estimates on the distances involved; and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost.
We study the integral representation properties of limits of sequences of integral functionals like under nonstandard growth conditions of -type: namely, we assume thatUnder weak assumptions on the continuous function , we prove -convergence to integral functionals of the same type. We also analyse the case of integrands depending explicitly on ; finally we weaken the assumption allowing to be discontinuous on nice sets.
We study the integral representation properties of limits of sequences of
integral functionals like under
nonstandard growth conditions of (p,q)-type: namely, we assume that
Under weak assumptions on the continuous function p(x), we prove
Γ-convergence to integral functionals of the same type.
We also analyse the case of integrands f(x,u,Du) depending explicitly
on u; finally we weaken the assumption allowing p(x) to be
discontinuous on nice sets.
Diamo condizioni sulle funzioni , e sulla misura affinché il funzionale sia -semicontinuo inferiormente su . Affrontiamo successivamente il problema del rilassamento.
An exploratory study is performed to investigate the use of a time-dependent discrete
adjoint methodology for design optimization of a high-lift wing configuration augmented
with an active flow control system. The location and blowing parameters associated with a
series of jet actuation orifices are used as design variables. In addition, a geometric
parameterization scheme is developed to provide a compact set of design variables
describing the wing...
We consider the identification of a distributed parameter in an elliptic variational inequality. On the basis of an optimal control problem formulation, the application of a primal-dual penalization technique enables us to prove the existence of multipliers giving a first order characterization of the optimal solution. Concerning the parameter we consider different regularity requirements. For the numerical realization we utilize a complementarity function, which allows us to rewrite the optimality...
We consider the identification of a distributed parameter in an elliptic
variational inequality. On the basis of an optimal control problem
formulation, the application of a primal-dual penalization
technique enables us to prove the existence
of multipliers giving a first order characterization of the optimal solution.
Concerning the parameter we consider different
regularity requirements. For the numerical realization we utilize a complementarity function,
which allows us to rewrite the optimality...
The ill-posed problem of solving linear equations in the space of vector-valued finite Radon measures with Hilbert space data is considered. Approximate solutions are obtained by minimizing the Tikhonov functional with a total variation penalty. The well-posedness of this regularization method and further regularization properties are mentioned. Furthermore, a flexible numerical minimization algorithm is proposed which converges subsequentially in the weak* sense and with rate 𝒪(n-1)...
In this paper, we introduce an iterative algorithm for finding a common element of the set of solutions of a mixed equilibrium problem, the set of fixed points of a nonexpansive mapping, and the the set of solutions of a variational inclusion in a real Hilbert space. Furthermore, we prove that the proposed iterative algorithm converges strongly to a common element of the above three sets, which is a solution of a certain optimization problem related to a strongly positive bounded linear operator....
Currently displaying 1 –
20 of
22