Page 1

Displaying 1 – 8 of 8

Showing per page

Variational inequalities in plasticity with strain-hardening - equilibrium finite element approach

Zdeněk Kestřánek (1986)

Aplikace matematiky

The incremental finite element method is applied to find the numerical solution of the plasticity problem with strain-hardening. Following Watwood and Hartz, the stress field is approximated by equilibrium triangular elements with linear functions. The field of the strain-hardening parameter is considered to be piecewise linear. The resulting nonlinear optimization problem with constraints is solved by the Lagrange multipliers method with additional variables. A comparison of the results obtained...

Verification of functional a posteriori error estimates for obstacle problem in 2D

Petr Harasim, Jan Valdman (2014)

Kybernetika

We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value...

Verification of functional a posteriori error estimates for obstacle problem in 1D

Petr Harasim, Jan Valdman (2013)

Kybernetika

We verify functional a posteriori error estimate for obstacle problem proposed by Repin. Simplification into 1D allows for the construction of a nonlinear benchmark for which an exact solution of the obstacle problem can be derived. Quality of a numerical approximation obtained by the finite element method is compared with the exact solution and the error of approximation is bounded from above by a majorant error estimate. The sharpness of the majorant error estimate is discussed.

Currently displaying 1 – 8 of 8

Page 1