The design of LQG controller for active suspension based on analytic hierarchy process.
We apply an approximation by means of the method of lines for hyperbolic stochastic functional partial differential equations driven by one-dimensional Brownian motion. We study the stability with respect to small -perturbations.
A Lagrange–Newton–SQP method is analyzed for the optimal control of the Burgers equation. Distributed controls are given, which are restricted by pointwise lower and upper bounds. The convergence of the method is proved in appropriate Banach spaces. This proof is based on a weak second-order sufficient optimality condition and the theory of Newton methods for generalized equations in Banach spaces. For the numerical realization a primal-dual active set strategy is applied. Numerical examples are...
A Lagrange–Newton–SQP method is analyzed for the optimal control of the Burgers equation. Distributed controls are given, which are restricted by pointwise lower and upper bounds. The convergence of the method is proved in appropriate Banach spaces. This proof is based on a weak second-order sufficient optimality condition and the theory of Newton methods for generalized equations in Banach spaces. For the numerical realization a primal-dual active set strategy is applied. Numerical examples are...
We consider a boundary optimal control problem for the Maxwell system with a final value cost criterion. We introduce a time domain decomposition procedure for the corresponding optimality system which leads to a sequence of uncoupled optimality systems of local-in-time optimal control problems. In the limit full recovery of the coupling conditions is achieved, and, hence, the local solutions and controls converge to the global ones. The process is inherently parallel and is suitable for real-time...
We consider a boundary optimal control problem for the Maxwell system with a final value cost criterion. We introduce a time domain decomposition procedure for the corresponding optimality system which leads to a sequence of uncoupled optimality systems of local-in-time optimal control problems. In the limit full recovery of the coupling conditions is achieved, and, hence, the local solutions and controls converge to the global ones. The process is inherently parallel and is suitable for real-time...
The paper is concerned with a parallel implementation of the progressive hedging algorithm (PHA) which is applicable for the solution of stochastic optimization problems. We utilized the Message Passing Interface (MPI) and the General Algebraic Modelling System (GAMS) to concurrently solve the scenario-related subproblems in parallel manner. The standalone application combining the PHA, MPI, and GAMS was programmed in C++. The created software was successfully applied to a steel production problem...