On the penalty approximation of quadratic programming problem
This paper investigates bipolar max-min equations which can be viewed as a generalization of fuzzy relational equations with max-min composition. The relation between the consistency of bipolar max-min equations and the classical boolean satisfiability problem is revealed. Consequently, it is shown that the problem of determining whether a system of bipolar max-min equations is consistent or not is NP-complete. Moreover, a consistent system of bipolar max-min equations, as well as its solution set,...
We present the solution of some inverse problems for one-dimensional free boundary problems of oxygen consumption type, with a semilinear convection-diffusion-reaction parabolic equation. Using a fixed domain transformation (Landau’s transformation) the direct problem is reduced to a system of ODEs. To minimize the objective functionals in the inverse problems, we approximate the data by a finite number of parameters with respect to which automatic differentiation is applied.
In this paper we discuss inverse problems in infiltration. We propose an efficient method for identification of model parameters, e.g., soil parameters for unsaturated porous media. Our concept is strongly based on the finite speed of propagation of the wetness front during the infiltration into a dry region. We determine the unknown parameters from the corresponding ODE system arising from the original porous media equation. We use the automatic differentiation implemented in the ODE solver LSODA....
We apply a theoretical framework for solving a class of worst scenario problems to a problem with a nonlinear partial differential equation. In contrast to the one-dimensional problem investigated by P. Harasim in Appl. Math. 53 (2008), No. 6, 583–598, the two-dimensional problem requires stronger assumptions restricting the admissible set to ensure the monotonicity of the nonlinear operator in the examined state problem, and, as a result, to show the existence and uniqueness of the state solution....
In this paper, the problems on purposefully controlling chaos for a three-dimensional quadratic continuous autonomous chaotic system, namely the chaotic Pehlivan-Uyaroglu system are investigated. The chaotic system, has three equilibrium points and more interestingly the equilibrium points have golden proportion values, which can generate single folded attractor. We developed an optimal control design, in order to stabilize the unstable equilibrium points of this system. Furthermore, we propose...
We propose a general approach for the numerical approximation of optimal control problems governed by a linear advection–diffusion equation, based on a stabilization method applied to the lagrangian functional, rather than stabilizing the state and adjoint equations separately. This approach yields a coherently stabilized control problem. Besides, it allows a straightforward a posteriori error estimate in which estimates of higher order terms are needless. Our a posteriori estimates stems from splitting...
We propose a general approach for the numerical approximation of optimal control problems governed by a linear advection–diffusion equation, based on a stabilization method applied to the Lagrangian functional, rather than stabilizing the state and adjoint equations separately. This approach yields a coherently stabilized control problem. Besides, it allows a straightforward a posteriori error estimate in which estimates of higher order terms are needless. Our a posteriori estimates stems from...
This paper concerns constrained dynamic optimization problems governed by delay control systems whose dynamic constraints are described by both delay-differential inclusions and linear algebraic equations. This is a new class of optimal control systems that, on one hand, may be treated as a specific type of variational problems for neutral functional-differential inclusions while, on the other hand, is related to a special class of differential-algebraic systems with a general delay-differential...